Marine organisms process and deliver many of their underwater coatings and adhesives as complex fluids. In marine mussels one such fluid, secreted during the formation of adhesive plaques, consists of a concentrated colloidal suspension of a mussel foot protein (mfp) known as Mfp-3S. The results of this study suggest that Mfp-3S becomes a complex fluid by a liquid-liquid phase separation from equilibrium solution at a pH and ionic strength reminiscent of the conditions created by the mussel foot during plaque formation. The pH dependence of phase separation and its sensitivity indicate that inter-/intra-molecular electrostatic interactions are partially responsible for driving the phase separation. Hydrophobic interactions between the non- polar Mfp-3S proteins provide another important driving force for coacervation. As complex coacervation typically results from charge-charge interactions between polyanions and polycations, Mfp-3S is thus unique in being the only known protein that coacervates with itself. The Mfp-3S coacervate was shown to have an effective interfacial energy of ⩽1mJm(-2), which explains its tendency to spread over or engulf most surfaces. Of particular interest to biomedical applications is the extremely high adsorption capacity of coacervated Mfp-3S on hydroxyapatite.
Keywords: Biological wet adhesion; Coacervate; Hydrophobicity; Hydroxyapatite; Interfacial energy; Mussel foot protein.
Copyright © 2013 Acta Materialia Inc. All rights reserved.