Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids
- PMID: 24066144
- PMCID: PMC3774753
- DOI: 10.1371/journal.pone.0074483
Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids
Abstract
In organisms with complex plastids acquired by secondary endosymbiosis from a photosynthetic eukaryote, the majority of plastid proteins are nuclear-encoded, translated on cytoplasmic ribosomes, and guided across four membranes by a bipartite targeting sequence. In-depth understanding of this vital import process has been impeded by a lack of information about the transit peptide part of this sequence, which mediates transport across the inner three membranes. We determined the mature N-termini of hundreds of proteins from the model diatom Thalassiosira pseudonana, revealing extensive N-terminal modification by acetylation and proteolytic processing in both cytosol and plastid. We identified 63 mature N-termini of nucleus-encoded plastid proteins, deduced their complete transit peptide sequences, determined a consensus motif for their cleavage by the stromal processing peptidase, and found evidence for subsequent processing by a plastid methionine aminopeptidase. The cleavage motif differs from that of higher plants, but is shared with other eukaryotes with complex plastids.
Conflict of interest statement
Figures
Similar articles
-
Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage.Plant J. 2015 Feb;81(3):519-28. doi: 10.1111/tpj.12734. Epub 2015 Jan 6. Plant J. 2015. PMID: 25438865 Free PMC article.
-
The physical and functional borders of transit peptide-like sequences in secondary endosymbionts.BMC Plant Biol. 2010 Oct 19;10:223. doi: 10.1186/1471-2229-10-223. BMC Plant Biol. 2010. PMID: 20958984 Free PMC article.
-
Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids.Plant J. 2005 Jan;41(2):175-83. doi: 10.1111/j.1365-313X.2004.02294.x. Plant J. 2005. PMID: 15634195
-
Transit peptide design and plastid import regulation.Trends Plant Sci. 2013 Jul;18(7):360-6. doi: 10.1016/j.tplants.2013.04.003. Epub 2013 May 18. Trends Plant Sci. 2013. PMID: 23688728 Review.
-
Protein targeting into plastids: a key to understanding the symbiogenetic acquisitions of plastids.J Plant Res. 2005 Aug;118(4):237-45. doi: 10.1007/s10265-005-0218-2. Epub 2005 Jul 26. J Plant Res. 2005. PMID: 16044198 Review.
Cited by
-
A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant.Mol Cell Proteomics. 2014 Aug;13(8):2031-41. doi: 10.1074/mcp.M113.035402. Epub 2014 Jan 9. Mol Cell Proteomics. 2014. PMID: 24408909 Free PMC article.
-
Evaluating possible maternal effect lethality and genetic background effects in Naa10 knockout mice.PLoS One. 2024 May 7;19(5):e0301328. doi: 10.1371/journal.pone.0301328. eCollection 2024. PLoS One. 2024. PMID: 38713657 Free PMC article.
-
Intracellular metabolic pathway distribution in diatoms and tools for genome-enabled experimental diatom research.Philos Trans R Soc Lond B Biol Sci. 2017 Sep 5;372(1728):20160402. doi: 10.1098/rstb.2016.0402. Philos Trans R Soc Lond B Biol Sci. 2017. PMID: 28717012 Free PMC article. Review.
-
Diatom Molecular Research Comes of Age: Model Species for Studying Phytoplankton Biology and Diversity.Plant Cell. 2020 Mar;32(3):547-572. doi: 10.1105/tpc.19.00158. Epub 2019 Dec 18. Plant Cell. 2020. PMID: 31852772 Free PMC article. Review.
-
A bipartite chromatophore transit peptide and N-terminal protein processing in the Paulinella chromatophore.Plant Physiol. 2022 May 3;189(1):152-164. doi: 10.1093/plphys/kiac012. Plant Physiol. 2022. PMID: 35043947 Free PMC article.
References
-
- Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459: 185–192. doi:10.1038/nature08057. PubMed: 19444204. - DOI - PubMed
-
- Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci 361: 193–208. doi:10.1111/j.1749-6632.1981.tb54365.x. PubMed: 6941719. - DOI - PubMed
-
- Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19: R81–R88. doi:10.1016/j.cub.2008.11.067. PubMed: 19174147. - DOI - PubMed
-
- Green BR (2011) After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. Photosynth Res 107: 103–115. doi:10.1007/s11120-010-9584-2. PubMed: 20676772. - DOI - PubMed
-
- Bolte K, Bullmann L, Hempel F, Bozarth A, Zauner S et al. (2009) Protein targeting into secondary plastids. J Eukaryot Microbiol 56: 9–15. doi:10.1111/j.1550-7408.2008.00370.x. PubMed: 19335770. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
