Reach-to-grasp movements require information about the distance and size of target objects. Calibration of this information could be achieved via feedback information (visual and/or haptic) regarding terminal accuracy when target objects are grasped. A number of reports suggest that the nervous system alters reach-to-grasp behavior following either a visual or haptic error signal indicating inaccurate reaching. Nevertheless, the reported modification is generally partial (reaching is changed less than predicted by the feedback error), a finding that has been ascribed to slow adaptation rates. It is possible, however, that the modified reaching reflects the system's weighting of the visual and haptic information in the presence of noise rather than calibration per se. We modeled the dynamics of calibration and showed that the discrepancy between reaching behavior and the feedback error results from an incomplete calibration process. Our results provide evidence for calibration being an intrinsic feature of reach-to-grasp behavior.
Keywords: calibration; cue combination; dynamics; feedback control; sensorimotor adaptation.