The coupling of weak light fields to Rydberg states of atoms under conditions of electromagnetically induced transparency leads to the formation of Rydberg polaritons which are quasiparticles with tunable effective mass and nonlocal interactions. Confined to one spatial dimension their low energy physics is that of a moving-frame Luttinger liquid which, due to the nonlocal character of the repulsive interaction, can form a Wigner crystal of individual photons. We calculate the Luttinger K parameter using density-matrix renormalization group simulations and find that under typical slow-light conditions kinetic energy contributions are too strong for crystal formation. However, adiabatically increasing the polariton mass by turning a light pulse into stationary spin excitations allows us to generate true crystalline order over a finite length. The dynamics of this process and asymptotic correlations are analyzed in terms of a time-dependent Luttinger theory.