Weak ferromagnetic transition with a dielectric anomaly in hexagonal Lu0.5Sc0.5FeO3

Inorg Chem. 2013 Oct 21;52(20):11889-94. doi: 10.1021/ic401482h. Epub 2013 Sep 30.

Abstract

Lu1-xScxFeO3 (0 ≤ x ≤ 1) was synthesized by a conventional solid-state reaction. The hexagonal phase appeared at 0.4 ≤ x ≤ 0.6, between the perovskite phase (0 ≤ x ≤ 0.3) and the bixbyite phase (0.7 ≤ x ≤ 1). Structural, magnetic, and dielectric properties of hexagonal Lu0.5Sc0.5FeO3 were investigated. Synchrotron X-ray diffraction measurements revealed that the crystal structure of Lu0.5Sc0.5FeO3 is isomorphic to hexagonal ferroelectrics RMnO3 (R = rare earth ion) with a polar space group of P63cm. A weak ferromagnetic transition with a dielectric anomaly occurred at a much higher temperature (162 K) than those in hexagonal RMnO3. Although remanent magnetization was observed below the transition temperature, it decreased to almost zero at 10 K. These results indicate a strong antiferromagnetic interaction between ground-state Fe(3+) ions on the triangular lattice.