Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity

Curr Pharm Des. 2014;20(18):2950-77. doi: 10.2174/13816128113196660699.


Improvements in health care have increased human life expectancy in recent decades, and the elderly population is thus increasing in most developed countries. Unfortunately this still means increased years of poor health or disability. Since it is not yet possible to modify our genetic background, the best anti-aging strategy is currently to intervene on environmental factors, aiming to reduce the incidence of risk factors of poor health. Calorie restriction (CR) with adequate nutrition is the only non-genetic, and the most consistent non-pharmacological intervention that extends lifespan in model organisms from yeast to mammals, and protects against the deterioration of biological functions, delaying or reducing the risk of many age-related diseases. The biological mechanisms of CR's beneficial effects include modifications in energy metabolism, oxidative stress, insulin sensitivity, inflammation, autophagy, neuroendocrine function and induction of hormesis/xenohormesis response. The molecular signalling pathways mediating the anti-aging effect of CR include sirtuins, peroxisome proliferator activated receptor G coactivator-1α, AMP-activated protein kinase, insulin/insulin growth factor-1, and target of rapamycin, which form a pretty interacting network. However, most people would not comply with such a rigorous dietary program; research is thus increasingly aimed at determining the feasibility and efficacy of natural and/or pharmacological CR mimetic molecules/ treatments without lowering food intake, particularly in mid- to late-life periods. Likely candidates act on the same signalling pathways as CR, and include resveratrol and other polyphenols, rapamycin, 2-deoxy-D-glucose and other glycolytic inhibitors, insulin pathway and AMP-activated protein kinase activators, autophagy stimulators, alpha-lipoic acid, and other antioxidants.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Aged
  • Aging / physiology*
  • Animals
  • Caloric Restriction*
  • Humans
  • Life Expectancy
  • Longevity / physiology*
  • Risk Factors
  • Signal Transduction / physiology