Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. Jan-Feb 2014;20(1):76-105.
doi: 10.1093/humupd/dmt038. Epub 2013 Sep 29.

The Effect of Combined Oral Contraception on Testosterone Levels in Healthy Women: A Systematic Review and Meta-Analysis

Affiliations
Free PMC article
Review

The Effect of Combined Oral Contraception on Testosterone Levels in Healthy Women: A Systematic Review and Meta-Analysis

Y Zimmerman et al. Hum Reprod Update. .
Free PMC article

Abstract

BACKGROUND; Combined oral contraceptives (COCs) reduce levels of androgen, especially testosterone (T), by inhibiting ovarian and adrenal androgen synthesis and by increasing levels of sex hormone-binding globulin (SHBG). Although this suppressive effect has been investigated by numerous studies over many years, to our knowledge no systematic review concerning this issue had been performed. This systematic review and meta-analysis was performed to evaluate the effect of COCs on concentrations of total T, free T and SHBG in healthy women and to evaluate differences between the various types of COCs (e.g. estrogen dose, type of progestin) and the assays used to assess total T and free T.

Methods: A review of the literature was performed using database searches (MEDLINE, EMBASE and the Cochrane Central Register of Clinical Trials) and all publications (from inception date until July 2012) investigating the effect of COCs on androgen levels in healthy women were considered eligible for selection. Three reviewers were involved in study selection, data extraction and critical appraisal. For the meta-analysis, data on total T, free T and SHBG were extracted and combined using random effects analysis. Additional subgroup analyses were performed to evaluate differences between the various types of COCs (e.g. estrogen dose, type of progestin) and the assays used to assess total T or free T.

Results: A total of 151 records were identified by systematic review and 42 studies with a total of 1495 healthy young women (age range: 18-40 years) were included in the meta-analysis. All included studies were experimental studies and 21 were non-comparative. Pooling of the results derived from all the included papers showed that total T levels significantly decreased during COC use [mean difference (MD) (95% confidence interval, CI) -0.49 nmol/l (-0.55, -0.42); P < 0.001]. Significantly lower levels of free T were also found [relative change (95% CI) 0.39 (0.35, 0.43); P < 0.001], with a mean decrease of 61%. On the contrary, SHBG concentrations significantly increased during all types of COC use [MD (95% CI) 99.08 nmol/l (86.43, 111.73); P < 0.001]. Subgroup analyses revealed that COCs containing 20-25 µg EE had similar effects on total and free T compared with COCs with 30-35 µg EE. In addition, suppressive effects on T levels were not different when comparing different types of progestins. However, subgroup analyses for the estrogen dose and the progestin type in relation to changes in SHBG levels did show significant differences: COCs containing second generation progestins and/or the lower estrogen doses (20-25 µg EE) were found to have less impact on SHBG concentrations.

Conclusions: The current literature review and meta-analysis demonstrates that COCs decrease circulating levels of total T and free T and increase SBHG concentrations. Due to the SHBG increase, free T levels decrease twice as much as total T. The estrogen dose and progestin type of the COC do not influence the decline of total and free T, but both affect SHBG. The clinical implications of suppressed androgen levels during COC use remain to be elucidated.

Keywords: SHBG; androgens; combined oral contraception; systematic review; testosterone.

Figures

Figure 1
Figure 1
Flowchart of the study selection process.
Figure 2
Figure 2
Meta-analysis of 39 studies on the effect of COCs on total T concentrations. COC, combined oral contraceptive; T, testosterone.
Figure 3
Figure 3
Subgroup analysis for the effect of type of progestin on total T concentrations in the meta-analysis. COC, combined oral contraceptive; T, testosterone.
Figure 4
Figure 4
Meta-analysis of 39 studies on the effect of COCs on SHBG concentrations. COC, combined oral contraceptive; SHBG, sex hormone-binding globulin.
Figure 5
Figure 5
Subgroup analysis for the effect of type of progestin on SHBG concentrations in the meta-analysis. COC, combined oral contraceptive; SHBG, sex hormone-binding globulin.
Figure 6
Figure 6
Meta-analysis of 29 studies on the effect of COCs on free T concentrations (log scale; relative change). COC, combined oral contraceptive; T, testosterone.
Figure 7
Figure 7
Subgroup analysis for the effect of type of progestin on free T concentrations in the meta-analysis on free T (log scale; relative change). T, testosterone.

Similar articles

See all similar articles

Cited by 26 articles

See all "Cited by" articles

References

    1. Aden U, Jung-Hoffmann C, Kuhl H. A randomized cross-over study on various hormonal parameters of two triphasic oral contraceptives. Contraception. 1998;58:75–81. - PubMed
    1. Alexander GM, Sherwin BB, Bancroft J, Davidson DW. Testosterone and sexual behavior in oral contraceptive users and nonusers: a prospective study. Horm Behav. 1990;24:388–402. - PubMed
    1. Aliyeva NO. Endocrine status of women against a background of hormonal contraceptives. Azerbaijan Med J. 2002;1:77–80.
    1. Ågren UM, Anttila M, Mäenpää-Liukko K, Rantala M-L, Rautiainen H, Sommer WF, Mommers E. Effects of a monophasic combined oral contraceptive containing nomegestrol acetate and 17ß-oestradiol in comparison to one containing levonorgestrel and ethinylestradiol on markers of endocrine function. Eur J Contracept Reprod Health Care. 2011a;16:458–467. - PMC - PubMed
    1. Ågren UM, Anttila M, Mäenpää-Liukko K, Rantala M-L, Rautiainen H, Sommer WF, Mommers E. Effects of a monophasic combined oral contraceptive containing nomegestrol acetate and 17ß-oestradiol compared with one containing levonorgestrel and ethinylestradiol on haemostasis, lipids and carbohydrate metabolism. Eur J Contracept Reprod Health Care. 2011b;16:444–457. - PMC - PubMed
Feedback