Soluble guanylate cyclase stimulators in pulmonary hypertension

Handb Exp Pharmacol. 2013:218:279-313. doi: 10.1007/978-3-642-38664-0_12.


Soluble guanylate cyclase (sGC) is a key enzyme in the nitric oxide (NO) signalling pathway. On binding of NO to its prosthetic haem group, sGC catalyses the synthesis of the second messenger cyclic guanosine monophosphate (cGMP), which promotes vasodilation and inhibits smooth muscle proliferation, leukocyte recruitment, platelet aggregation and vascular remodelling through a number of downstream mechanisms. The central role of the NO-sGC-cGMP pathway in regulating pulmonary vascular tone is demonstrated by the dysregulation of NO production, sGC activity and cGMP degradation in pulmonary hypertension (PH). The sGC stimulators are novel pharmacological agents that directly stimulate sGC, both independently of NO and in synergy with NO. Optimisation of the first sGC stimulator, YC-1, led to the development of the more potent and more specific sGC stimulators, BAY 41-2272, BAY 41-8543 and riociguat (BAY 63-2521). Other sGC stimulators include CFM-1571, BAY 60-4552, vericiguat (BAY 1021189), the acrylamide analogue A-350619 and the aminopyrimidine analogues. BAY 41-2272, BAY 41-8543 and riociguat induced marked dose-dependent reductions in mean pulmonary arterial pressure and vascular resistance with a concomitant increase in cardiac output, and they also reversed vascular remodelling and right heart hypertrophy in several experimental models of PH. Riociguat is the first sGC stimulator that has entered clinical development. Clinical trials have shown that it significantly improves pulmonary vascular haemodynamics and increases exercise ability in patients with pulmonary arterial hypertension (PAH), chronic thromboembolic PH and PH associated with interstitial lung disease. Furthermore, riociguat reduces mean pulmonary arterial pressure in patients with PH associated with chronic obstructive pulmonary disease and improves cardiac index and pulmonary vascular resistance in patients with PH associated with left ventricular systolic dysfunction. These promising results suggest that sGC stimulators may constitute a valuable new therapy for PH. Other trials of riociguat are in progress, including a study of the haemodynamic effects and safety of riociguat in patients with PH associated with left ventricular diastolic dysfunction, and long-term extensions of the phase 3 trials investigating the efficacy and safety of riociguat in patients with PAH and chronic thromboembolic PH. Finally, sGC stimulators may also have potential therapeutic applications in other diseases, including heart failure, lung fibrosis, scleroderma and sickle cell disease.

Publication types

  • Review

MeSH terms

  • Animals
  • Clinical Trials as Topic
  • Cyclic GMP / physiology
  • Guanylate Cyclase / physiology*
  • Heterocyclic Compounds, 2-Ring / therapeutic use*
  • Humans
  • Hypertension, Pulmonary / drug therapy*
  • Morpholines / therapeutic use
  • Nitric Oxide / physiology
  • Pyrazoles / therapeutic use*
  • Pyridines / therapeutic use
  • Pyrimidines / therapeutic use*
  • Receptors, Cytoplasmic and Nuclear / physiology*
  • Soluble Guanylyl Cyclase


  • 3-(4-Amino-5-cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo(3,4-b)pyridine
  • BAY 41-8543
  • Heterocyclic Compounds, 2-Ring
  • Morpholines
  • Pyrazoles
  • Pyridines
  • Pyrimidines
  • Receptors, Cytoplasmic and Nuclear
  • Nitric Oxide
  • Guanylate Cyclase
  • Soluble Guanylyl Cyclase
  • Cyclic GMP
  • vericiguat
  • riociguat