A novel experience induces the Arc/Arg3.1 gene as well as plasticity of CA1 neural networks. To understand how these are linked, we briefly exposed GFP reporter mice of Arc transcription to a novel environment. Excitatory synaptic function of CA1 neurons with recent in vivo Arc induction (ArcGFP+) was similar to neighboring noninduced neurons. However, in response to group 1 metabotropic glutamate receptor (mGluR) activation, ArcGFP+ neurons preferentially displayed long-term synaptic depression (mGluR-LTD) and robust increases in dendritic Arc protein. mGluR-LTD in ArcGFP+ neurons required rapid protein synthesis and Arc, suggesting that dendritic translation of Arc underlies the priming of mGluR-LTD. In support of this idea, novelty exposure increased Arc messenger RNA in CA1 dendrites and promoted mGluR-induced translation of Arc in hippocampal synaptoneurosomes. Repeated experience suppressed synaptic transmission onto ArcGFP+ neurons and occluded mGluR-LTD ex vivo. mGluR-LTD priming in neurons with similar Arc activation history may contribute to encoding a novel environment.
Copyright © 2013 Elsevier Inc. All rights reserved.