Episodic memory refers to the capacity to bind multimodal memories to constitute a unique personal event. Most developmental studies on episodic memory focused on one specific component, i.e., the core factual information. The present study examines the relevance of a novel episodic paradigm to assess its developmental trajectories in a more comprehensive way according to the type of association (item-feature, item-location, and item-sequence associations) with measures of both objective and subjective recollection. We conducted a behavioral study aimed at testing the effects of age in a large sample of 160 children, adolescents, and young adults (6-23 years old). We confronted the behavioral data to the neural correlates in a subgroup of 30 children using voxel-based morphometry. Behavioral data outlined differential developmental trajectories according to the type of association, with a continuous increase of factual associative memory efficiency until 10 years, a linear increase of performance in spatial associative memory that pursues until early adulthood and an abrupt increase in temporal associative memory efficiency between 9 and 10. Regarding recollection, measures showed a more pronounced enhancement from 9 to 10 years. Hence, behavioral data highlight a peculiar period in late childhood (8-10 years old) crucial for the developmental time course of episodic memory. Regarding structural data, we found that the improvement of associative memory efficiency was related to a decrease in gray matter volume in a large cerebral network including the dorsolateral and ventrolateral prefrontal cortex (and superior and anterior temporal regions), and the hippocampus bilaterally. These data suggest that multimodal integration would probably be related to the maturation of temporal regions and modulated by a fronto-parietal network. Besides, our findings emphasize the relevance of the present paradigm to assess episodic memory especially in the clinical setting.
Keywords: associative memory; episodic memory; recollection; sequential memory; spatial memory; structural imaging.