Fixation of CO2 in Clostridium cellulovorans analyzed by 13C-isotopomer-based target metabolomics

AMB Express. 2013 Oct 9;3(1):61. doi: 10.1186/2191-0855-3-61.

Abstract

Clostridium cellulovorans has been one of promising microorganisms to use biomass efficiently; however the basic metabolic pathways have not been completely known. We carried out 13C-isotopomer-based target metabolome analysis, or carbohydrate conversion process analysis, for more profound understanding of metabolic pathways of the bacterium. Our findings that pyruvate + oxaloacetate, fumarate, and malate inside and outside cells exhibited 13C incorporation suggest that C. cellulovorans exactly fixed CO2 and partly operated the TCA cycle in a reductive manner. Accompanied with CO2 fixation, the microorganism was also found to produce and secrete lactate. Overall, our study demonstrates that a part of C. cellulovorans metabolic pathways related to glycolysis and the TCA cycle are involved in CO2 fixation.