Covalent thiol adducts arising from reactive intermediates of cocaine biotransformation

Chem Res Toxicol. 2013 Nov 18;26(11):1755-64. doi: 10.1021/tx4003116. Epub 2013 Oct 30.


Exposure to cocaine results in the depletion of hepatocellular glutathione and macromolecular protein binding in humans. Such cocaine-induced responses have generally been attributed to oxidative stress and reactive metabolites resulting from oxidative activation of the cocaine tropane nitrogen. However, little conclusive data exists on the mechanistic pathways leading to protein modification or the structure and specificity of cocaine-derived adduction products. We now report a previously uncharacterized route of cocaine bioactivation leading to the covalent adduction of biological thiols, including cysteine and glutathione. Incubation of cocaine with biological nucleophiles in an in vitro biotransformation system containing human liver microsomes identified a monooxygenase-mediated event leading to the oxidation of, and subsequent sulfhydryl addition to, the cocaine aryl moiety. Adduct structures were confirmed using ultra-high performance liquid chromatography coupled to high resolution, high mass accuracy mass spectrometry. Examination of assays containing transgenic bactosomes expressing single human cytochrome P450 isoforms determined the role of P450s 1A2, 2C19, and 2D6 in the oxidation process resulting in adduct formation. P450-catalyzed aryl epoxide formation and subsequent attack by free nucleophilic moieties is consistent with the resulting adduct structures, mechanisms of formation, and the empirical observation of multiple structural and stereo isomers. Analogous adduction mechanisms were maintained across all sulfhydryl-containing nucleophile models examined; N-acetylcysteine, glutathione, and a synthetic cysteine-containing hexapeptide. Predictive in silico calculations of molecular reactivity and electrophilicity/nucleophilicity were compared to the results of in vitro assay incubations in order to better understand the adduction process using the principles of hard and soft acid and base (HSAB) theory. This study elucidated a novel metabolic pathway that may be of particular significance to the clinical and forensic toxicology of cocaine and provides analytical tools and methods that can be applied to the determination of these conjugates in humans, opening a new area of research on cocaine biotransformation and toxicology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcysteine / chemistry
  • Acetylcysteine / metabolism
  • Biotransformation
  • Chromatography, High Pressure Liquid
  • Cocaine / chemistry
  • Cocaine / metabolism*
  • Cytochrome P-450 Enzyme System / metabolism
  • Glutathione / chemistry
  • Glutathione / metabolism
  • Humans
  • Microsomes, Liver / metabolism
  • Mixed Function Oxygenases / metabolism
  • Oxidation-Reduction
  • Protein Isoforms / metabolism
  • Quantum Theory
  • Spectrometry, Mass, Electrospray Ionization
  • Sulfhydryl Compounds / chemistry
  • Sulfhydryl Compounds / metabolism*


  • Protein Isoforms
  • Sulfhydryl Compounds
  • Cytochrome P-450 Enzyme System
  • Mixed Function Oxygenases
  • Glutathione
  • Cocaine
  • Acetylcysteine