Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 503 (7475), 257-61

The Earliest Known Holometabolous Insects

Affiliations

The Earliest Known Holometabolous Insects

André Nel et al. Nature.

Abstract

The Eumetabola (Endopterygota (also known as Holometabola) plus Paraneoptera) have the highest number of species of any clade, and greatly contribute to animal species biodiversity. The palaeoecological circumstances that favoured their emergence and success remain an intriguing question. Recent molecular phylogenetic analyses have suggested a wide range of dates for the initial appearance of the Holometabola, from the Middle Devonian epoch (391 million years (Myr) ago) to the Late Pennsylvanian epoch (311 Myr ago), and Hemiptera (310 Myr ago). Palaeoenvironments greatly changed over these periods, with global cooling and increasing complexity of green forests. The Pennsylvanian-period crown-eumetabolan fossil record remains notably incomplete, particularly as several fossils have been erroneously considered to be stem Holometabola (Supplementary Information); the earliest definitive beetles are from the start of the Permian period. The emergence of the hymenopterids, sister group to other Holometabola, is dated between 350 and 309 Myr ago, incongruent with their current earliest record (Middle Triassic epoch). Here we describe five fossils--a Gzhelian-age stem coleopterid, a holometabolous larva of uncertain ordinal affinity, a stem hymenopterid, and early Hemiptera and Psocodea, all from the Moscovian age--and reveal a notable penecontemporaneous breadth of early eumetabolan insects. These discoveries are more congruent with current hypotheses of clade divergence. Eumetabola experienced episodes of diversification during the Bashkirian-Moscovian and the Kasimovian-Gzhelian ages. This cladogenetic activity is perhaps related to notable episodes of drying resulting from glaciations, leading to the eventual demise in Euramerica of coal-swamp ecosystems, evidenced by floral turnover during this interval. These ancient species were of very small size, living in the shadow of Palaeozoic-era 'giant' insects. Although these discoveries reveal unexpected Pennsylvanian eumetabolan diversity, the lineage radiated more successfully only after the mass extinctions at the end of the Permian period, giving rise to the familiar crown groups of their respective clades.

Similar articles

See all similar articles

Cited by 26 articles

  • Hippophae rhamnoides berry related Pichia kudriavzevii yeast volatiles modify behaviour of Rhagoletis batava flies.
    Mozūraitis R, Aleknavičius D, Vepštaitė-Monstavičė I, Stanevičienė R, Emami SN, Apšegaitė V, Radžiutė S, Blažytė-Čereškienė L, Servienė E, Būda V. Mozūraitis R, et al. J Adv Res. 2019 Aug 5;21:71-77. doi: 10.1016/j.jare.2019.08.001. eCollection 2020 Jan. J Adv Res. 2019. PMID: 32071775 Free PMC article.
  • Gene content evolution in the arthropods.
    Thomas GWC, Dohmen E, Hughes DST, Murali SC, Poelchau M, Glastad K, Anstead CA, Ayoub NA, Batterham P, Bellair M, Binford GJ, Chao H, Chen YH, Childers C, Dinh H, Doddapaneni HV, Duan JJ, Dugan S, Esposito LA, Friedrich M, Garb J, Gasser RB, Goodisman MAD, Gundersen-Rindal DE, Han Y, Handler AM, Hatakeyama M, Hering L, Hunter WB, Ioannidis P, Jayaseelan JC, Kalra D, Khila A, Korhonen PK, Lee CE, Lee SL, Li Y, Lindsey ARI, Mayer G, McGregor AP, McKenna DD, Misof B, Munidasa M, Munoz-Torres M, Muzny DM, Niehuis O, Osuji-Lacy N, Palli SR, Panfilio KA, Pechmann M, Perry T, Peters RS, Poynton HC, Prpic NM, Qu J, Rotenberg D, Schal C, Schoville SD, Scully ED, Skinner E, Sloan DB, Stouthamer R, Strand MR, Szucsich NU, Wijeratne A, Young ND, Zattara EE, Benoit JB, Zdobnov EM, Pfrender ME, Hackett KJ, Werren JH, Worley KC, Gibbs RA, Chipman AD, Waterhouse RM, Bornberg-Bauer E, Hahn MW, Richards S. Thomas GWC, et al. Genome Biol. 2020 Jan 23;21(1):15. doi: 10.1186/s13059-019-1925-7. Genome Biol. 2020. PMID: 31969194 Free PMC article.
  • The evolution and genomic basis of beetle diversity.
    McKenna DD, Shin S, Ahrens D, Balke M, Beza-Beza C, Clarke DJ, Donath A, Escalona HE, Friedrich F, Letsch H, Liu S, Maddison D, Mayer C, Misof B, Murin PJ, Niehuis O, Peters RS, Podsiadlowski L, Pohl H, Scully ED, Yan EV, Zhou X, Ślipiński A, Beutel RG. McKenna DD, et al. Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24729-24737. doi: 10.1073/pnas.1909655116. Epub 2019 Nov 18. Proc Natl Acad Sci U S A. 2019. PMID: 31740605 Free PMC article.
  • Middle-Late Triassic insect radiation revealed by diverse fossils and isotopic ages from China.
    Zheng D, Chang SC, Wang H, Fang Y, Wang J, Feng C, Xie G, Jarzembowski EA, Zhang H, Wang B. Zheng D, et al. Sci Adv. 2018 Sep 5;4(9):eaat1380. doi: 10.1126/sciadv.aat1380. eCollection 2018 Sep. Sci Adv. 2018. PMID: 30191177 Free PMC article.
  • Species-Specific Interactions between Plant Metabolites and Insect Juvenile Hormone Receptors.
    Shin SW, Jeon JH, Yun CS, Jeong SA, Kim JA, Park DS, Shin Y, Oh HW. Shin SW, et al. J Chem Ecol. 2018 Nov;44(11):1022-1029. doi: 10.1007/s10886-018-1001-x. Epub 2018 Jul 23. J Chem Ecol. 2018. PMID: 30033491
See all "Cited by" articles

References

    1. Evol Dev. 2001 Mar-Apr;3(2):59-72 - PubMed
    1. BMC Evol Biol. 2011 Nov 21;11:341 - PubMed
    1. Trends Ecol Evol. 2005 Jan;20(1):4-6 - PubMed
    1. Mol Phylogenet Evol. 2011 Dec;61(3):880-7 - PubMed
    1. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10927-30 - PubMed

Publication types

LinkOut - more resources

Feedback