Tendon vibration can alter proprioceptive feedback, one source of sensory information which humans can use to produce accurate movements. However, the effects of tendon vibration during functional movement vary depending on the task. For example, ankle tendon vibration has considerably smaller effects during walking than standing posture. The purpose of this study was to test whether the effects of ankle tendon vibration are predictably influenced by the mechanical demands of a task, as quantified by peak velocity. Twelve participants performed symmetric, cyclical ankle plantar flexion/dorsiflexion movements while lying prone with their ankle motion unconstrained. The prescribed movement period (1, 3 s) and peak-to-peak amplitude (10°, 15°, 20°) were varied across trials; shorter movement periods or larger amplitudes increased the peak velocity. In some trials, vibration was continuously and simultaneously applied to the right ankle plantar flexor and dorsiflexor tendons, while the left ankle tendons were never vibrated. The vibration frequency (40, 80, 120, 160 Hz) was varied across trials. During trials without vibration, participants accurately matched the movement of their ankles. The application of 80 Hz vibration to the right ankle tendons significantly reduced the amplitude of right ankle movement. However, the effect of vibration was smaller during more mechanically demanding (i.e., higher peak velocity) movements. Higher vibration frequencies had larger effects on movement accuracy, possibly due to parallel increases in vibration amplitude. These results demonstrate that the effects of ankle tendon vibration are dependent on the mechanical demand of the task being performed, but cannot definitively identify the underlying physiological mechanism.