Mechanisms of atrial mitral regurgitation: insights using 3D transoesophageal echo

Eur Heart J Cardiovasc Imaging. 2014 May;15(5):500-8. doi: 10.1093/ehjci/jet191. Epub 2013 Oct 20.

Abstract

Aims: Functional mitral regurgitation (FMR) is a consequence of mitral annular enlargement, leaflet tethering and reduced co-aptation. The importance of the left atrium (LA) as a cause of mitral regurgitation (MR) is less clear. We applied a co-aptation index using three-dimensional (3D) transoesophageal echocardiography to FMR and MR secondary to LA dilatation (atrial mitral regurgitation, AMR).

Methods and results: Seventy-two patients underwent comprehensive 3D echo studies: FMR (n = 19); AMR (n = 33); and 20 controls. We recorded: LV size and function; LA dimensions; mitral annular area (MVA); and leaflet area in early and late systole. MVA fractional change was defined: (MVA late systole - MVA early systole)/MVA late systole × 100%; the co-aptation index was defined: (leaflet area early systole - leaflet area late systole)/leaflet area early systole × 100%. Despite normal LV size and function in AMR, MVA was increased similarly to FMR (AMR 12.86 cm(2) vs. FMR 12.33 cm(2), P = ns; both P < 0.01 vs. controls 8.83 cm(2)), and MVA fractional change similarly reduced (AMR 5.1% vs. FMR 6.3%; P = ns; both P < 0.001 vs. controls 14.6%). The co-aptation index was reduced in both MR groups (FMR 6.6% vs. AMR 7.0%, P = ns; both P < 0.001 vs. controls 19.6%). After multivariate analysis, the co-aptation index (χ(2) = 41.2) and MVA fractional change (χ(2) = 22.1) remained the strongest predictors of MR (both P < 0.001 for the model). A co-aptation index of ≤13% was 96% sensitive and 90% specific for the presence of MR.

Conclusion: LA dilatation leads to MVA enlargement, reduced leaflet co-aptation and MR even without LV dilatation. A co-aptation index describes this in vivo. This work provides insights into the mechanism of AMR.

Keywords: left atrium; mitral valve regurgitation; three-dimensional transoesophageal echocardiography.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Atrial Fibrillation / diagnostic imaging
  • Atrial Fibrillation / physiopathology
  • Case-Control Studies
  • Echocardiography, Three-Dimensional*
  • Echocardiography, Transesophageal
  • Female
  • Heart Atria / diagnostic imaging*
  • Heart Atria / physiopathology*
  • Humans
  • Image Interpretation, Computer-Assisted
  • Male
  • Middle Aged
  • Mitral Valve Insufficiency / diagnostic imaging*
  • Mitral Valve Insufficiency / physiopathology*