Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct 11;8(10):e75954.
doi: 10.1371/journal.pone.0075954. eCollection 2013.

The Clinical Impact of Mean Vessel Size and Solidity in Breast Carcinoma Patients

Affiliations
Free PMC article

The Clinical Impact of Mean Vessel Size and Solidity in Breast Carcinoma Patients

Lars Tore Gyland Mikalsen et al. PLoS One. .
Free PMC article

Abstract

Angiogenesis quantification, through vessel counting or area estimation in the most vascular part of the tumour, has been found to be of prognostic value across a range of carcinomas, breast cancer included. We have applied computer image analysis to quantify vascular properties pertaining to size, shape and spatial distributions in photographed fields of CD34 stained sections. Aided by a pilot (98 cases), seven parameters were selected and validated on a separate set from 293 breast cancer patients. Two new prognostic markers were identified through continuous cox regression with endpoints breast cancer specific survival and distant disease free survival: The average size of the vessels as measured by their perimeter (p = 0.003 and 0.004, respectively), and the average complexity of the vessel shapes measured by their solidity (p = 0.004 and 0.004). The Hazard ratios for the corresponding median-dichotomized markers were 2.28 (p = 0.005) and 1.89 (p = 0.016) for the mean perimeter and 1.80 (p = 0.041) and 1.55 (p = 0.095) for the shape complexity. The markers were associated with poor histologic type, high grade, necrosis, HR negativity, inflammation, and p53 expression (vessel size only). Both markers were found to strongly influence the prognostic properties of vascular invasion (VI) and disseminated tumour cells in the bone marrow. The latter being prognostic only in cases with large vessels (p = 0.004 and 0.043) or low complexity (p = 0.018 and 0.024), but not in the small or complex vessel groups (p>0.47). VI was significant in all groups, but showed greater hazard ratios for small and low complexity vessels (6.54-11.2) versus large and high complexity vessels (2.64-3.06). We find that not only the overall amount of produced vasculature in angiogenic hot-spots is of prognostic significance, but also the morphological appearance of the generated vessels, i.e. the size and shape of vessels in the studied hot spots.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. CD34 section case examples.
A) High MVSμ; low MVPμ, MVAΣ and MVD; B) Average MVSμ, high MVPμ and MVAΣ, and low MVD; C) Low MVSμ, high MVPμ and MVAΣ, and low MVD; D) Low MVSμ, average MVPμ and MVAΣ, and high MVD. High MVPμ values (large vessels) and low MVSμ values (high complexity shapes) contribute to poor prognosis; as well as high MVAΣ values (high vascular area) , but MVD is inconsequential .
Figure 2
Figure 2. Illustration of the quantified vascular features.
A) Individual vessel characterization: Endothelial area (red); luminal area (blue); vessel/vascular area (red + blue); vessel perimeter (stapled green); width (diameter of imposed yellow circle); skeleton (black line); branching points (yellow markers); convex hull (interior of stapled black line, i.e. vessel + gray). B) Contextual vasculature characterization: centre of vessel (yellow markers); Neighbouring vessels according to the Gabriel's Graph criterion (blue lines), i.e. all connections between vessels such that no other vessel centres are found within the circle spanned by the connecting line (see blue circle). Vertices which do not fit the criteria are not considered neighbours (magenta stapled lines; see red circle); equidistant watershed lines (black), each region within the black lines is closer to the enclosed vessel than any other vessel.
Figure 3
Figure 3. The prognostic associations of the dichotomized markers.
The Kaplan-Meier plots of the median-categorized MVPμ (A–D) and MVSμ (E–H) data against DDFS (A, C, E, G) and BCSS (B, D, F, H) end-points in the set of all cases (A,B,E,F) and the set of node-negative no systemic therapy cases (C,D,G,H). p-values are by the log-rank test. Hazard ratios (HR) with 95-% confidence intervals in parentheses are for Cox regression of high-risk vs low-risk groups. *: Low and high solidity corresponds, respectively, to high and low vessel profile complexity.
Figure 4
Figure 4. DTC and VI's prognostic dependency upon the vascular markers.
The figure shows Kaplan-Meier plots of DTC (A–H) and VI (I–P) for the end-points DDFS (A–F and I–L) and BCSS (E–H and M–P) within vascular sub-groups (columns): Small vessels (A, E, I and M), large vessels (B, F, J and N), low complexity vessels (C, G, K, and O) and high complexity vessels (D, H, L and P). Gray curves: DTC or VI negative; black: Positive. HR: Cox regression hazard ratios with 95% confidence interval. p-values are by log-rank test.

Similar articles

See all similar articles

Cited by 6 articles

See all "Cited by" articles

References

    1. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute 82: 4–6. - PubMed
    1. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, et al. (2000) Openings between defective endothelial cells explain tumor vessel leakiness. American Journal of Pathology 156: 1363–1380. - PMC - PubMed
    1. Konerding MA, Malkusch W, Klapthor B, van Ackern C, Fait E, et al. (1999) Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br J Cancer 80: 724–732. - PMC - PubMed
    1. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407: 249–257. - PubMed
    1. Vermeulen PB, Gasparini G, Fox SB, Toi M, Martin L, et al. (1996) Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer 32A: 2474–2484. - PubMed

Publication types

MeSH terms

Substances

Grant support

The financial support from the European Union 7th Framework Programme (grant 222741 – METOXIA) is greatly appreciated. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Feedback