Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea

FEMS Microbiol Lett. 2013 Dec;349(1):46-53. doi: 10.1111/1574-6968.12294. Epub 2013 Oct 24.

Abstract

Our goal was to study the symbiotic performance of two Mesorhizobium ciceri strains, transformed with an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene (acdS), in chickpea plants under salinity stress. The EE-7 (salt-sensitive) and G-55 (salt-tolerant) M. ciceri strains were transformed with an acdS gene present on plasmid pRKACC. Salinity significantly reduced the overall growth of plants inoculated with either wild-type strains. Although the growth of plants inoculated with either salt-sensitive or salt-tolerant strain was reduced under salinity, the salt-tolerant strain showed a higher ability to nodulate chickpea under salt stress compared with the salt-sensitive strain. The shoot dry weight was significantly higher in plants inoculated with the acdS-transformed salt-sensitive strain compared with the plants inoculated with the native strain in the presence of salt. The negative effects of salt stress were also reduced in nodulation when using acdS-transformed strains in comparison with the wild-type strains. Interestingly, by expressing the exogenous acdS gene, the salt-sensitive strain was able to induce nodules in the same extent as the salt-tolerant strain. Although preliminary, these results suggest that genetic modification of a Mesorhizobium strain can improve its symbiotic performance under salt stress and indicate that ACC deaminase can play an important role in facilitating plant-rhizobium interaction under salinity conditions.

Keywords: ACC deaminase; mesorhizobia; salinity; stress tolerance; symbiosis.

Publication types

  • Letter
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon-Carbon Lyases / genetics*
  • Cicer / drug effects*
  • Cicer / growth & development
  • Cicer / microbiology*
  • Gene Expression Regulation, Bacterial*
  • Mesorhizobium / genetics*
  • Salts / toxicity*
  • Stress, Physiological*

Substances

  • Salts
  • 1-aminocyclopropane-1-carboxylate deaminase
  • Carbon-Carbon Lyases