B-type natriuretic peptide inhibits angiotensin II-induced proliferation and migration of pulmonary arterial smooth muscle cells

Pediatr Pulmonol. 2014 Aug;49(8):734-44. doi: 10.1002/ppul.22904. Epub 2013 Oct 25.

Abstract

Pulmonary vascular remodeling, characterized by disordered proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), is a pathognomonic feature of pulmonary arterial hypertension. Thus, pharmacologic strategy targeting on anti-proliferation and anti-migration of PASMCs may have therapeutic implications for PAH. Here we investigated the effects and underlying mechanisms of B-type natriuretic peptide (BNP) on angiotensin II (Ang II)-induced proliferation and migration of PASMCs. Proliferation and migration of PASMCs cultured from Wistar rats were induced by Ang II, with or without BNP treatment. In addition, potential underlying mechanisms including cell cycle progression, Ca(2+) overload, reactive oxygen species (ROS) production, signal transduction of MAPK and Akt, and the cGMP/PKG pathway were examined. We found that BNP inhibited Ang II-induced PASMCs proliferation and migration dose dependently. BNP could also arrest the cell cycle progression in the G0/G1-phase. In addition, BNP attenuated intracellular calcium overload caused by Ang II. Moreover, Ang II-induced ROS production was mitigated by BNP, with associated down-regulation of NAD(P)H oxidase 1 (Nox1) and reduced mitochondrial ROS production. Finally, Ang II-activated MAPKs and Akt were also counteracted by BNP. Of note, all these effects of BNP were abolished by a PKG inhibitor (Rp-8-Br-PET-cGMPS). In conclusion, BNP inhibits Ang II-induced PASMCs proliferation and migration. These effects are potentially mediated by decreased calcium influx, reduced ROS production by Nox1 and mitochondria, and down-regulation of MAPK and Akt signal transduction, through the cGMP/PKG pathway. Therefore, this study implicates that BNP may have a therapeutic role in pulmonary vascular remodeling.

Keywords: cGMP; pulmonary vascular remodeling; reactive oxygen species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin II / pharmacology
  • Animals
  • Calcium / metabolism
  • Cell Movement / drug effects*
  • Cell Proliferation / drug effects*
  • Cells, Cultured
  • Down-Regulation
  • MAP Kinase Signaling System / drug effects
  • Mitochondria / drug effects
  • Muscle, Smooth, Vascular / cytology*
  • Muscle, Smooth, Vascular / drug effects
  • Myocytes, Smooth Muscle / drug effects*
  • NADH, NADPH Oxidoreductases / drug effects
  • NADH, NADPH Oxidoreductases / metabolism
  • NADPH Oxidase 1
  • Natriuretic Agents / pharmacology*
  • Natriuretic Peptide, Brain / pharmacology*
  • Proto-Oncogene Proteins c-akt / drug effects
  • Proto-Oncogene Proteins c-akt / metabolism
  • Pulmonary Artery / cytology*
  • Pulmonary Artery / drug effects
  • Rats
  • Rats, Wistar
  • Reactive Oxygen Species
  • Vasoconstrictor Agents / pharmacology

Substances

  • Natriuretic Agents
  • Reactive Oxygen Species
  • Vasoconstrictor Agents
  • Angiotensin II
  • Natriuretic Peptide, Brain
  • NADH, NADPH Oxidoreductases
  • NADPH Oxidase 1
  • NOX1 protein, rat
  • Proto-Oncogene Proteins c-akt
  • Calcium