Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.)

Theor Appl Genet. 1995 Jul;91(2):374-81. doi: 10.1007/BF00220902.


'Lemont' and 'Teqing' are both semidwarf rice varieties that differ in heading date by only 6 days. However, when 'Lemont' and 'Teqing' are crossed there is transgressive segregation for both heading date (HD) and plant height (PH). By testing 2418 F4 lines with 113 well-distributed RFLP markers, we identified and mapped chromosomal regions that were largely responsible for this transgressive segregation. QHd3a, a QTL from 'Lemont' that gives 8 days earlier heading, was identified on chromosome 3 approximately 3 cM from the marker RG348. Another QTL with a large effect, QHd8a, which gives 7 days earlier heading, was identified on chromosome 8 of 'Teqing' between RG20 and RG1034. Along with a QTL, QHd9a with a phenotypic effect of 3.5 days, these genomic regions collectively explain 76.5% of the observed phenotypic variance in heading date. Four QTLs which altered plant height from 4 to 7 cm were also mapped; these collectively explain 48.8% of the observed phenotypic variation in plant height. None of the QTLs for plant height mapped to chromosome 1, the location of the semidwarf gene sd-1. All three of the HD loci mapped to approximately the same genomic locations as PH QTLs, and in all cases, there was a reduction in height of approximately 1 cm for every day of earlier heading. The correspondence between the HD and some of the PH loci suggests that genes at these chromosome locations may have pleiotropic effects on both HD and PH. The observed heterosis in the F1 plants for HD can be largely explained by the dominance for earliness of the identified HD loci and distribution of earlier heading alleles in the parents. However, overdominance observed at one of the PH QTL may, at least in part, be responsible for the observed heterosis in PH.