Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Oct 30;7(1):22.
doi: 10.1186/1479-7364-7-22.

Update of the Human and Mouse SERPIN Gene Superfamily

Affiliations
Free PMC article
Review

Update of the Human and Mouse SERPIN Gene Superfamily

Claire Heit et al. Hum Genomics. .
Free PMC article

Abstract

The serpin family comprises a structurally similar, yet functionally diverse, set of proteins. Named originally for their function as serine proteinase inhibitors, many of its members are not inhibitors but rather chaperones, involved in storage, transport, and other roles. Serpins are found in genomes of all kingdoms, with 36 human protein-coding genes and five pseudogenes. The mouse has 60 Serpin functional genes, many of which are orthologous to human SERPIN genes and some of which have expanded into multiple paralogous genes. Serpins are found in tissues throughout the body; whereas most are extracellular, there is a class of intracellular serpins. Serpins appear to have roles in inflammation, immune function, tumorigenesis, blood clotting, dementia, and cancer metastasis. Further characterization of these proteins will likely reveal potential biomarkers and therapeutic targets for disease.

Figures

Figure 1
Figure 1
Native SERPINA1. Native SERPINA1 with labeled structural elements: β sheet a and reactive center loop (RCL); α helices in red, β sheets in turquoise, turns in green. (Adapted from PDB 1HP7).
Figure 2
Figure 2
SERPIN phylogenetic tree. Phylogenetic tree of human and mouse serpin proteins. Protein sequences were aligned using TCOFFEE and analysed using neighbour-joining methods with 10,000 bootstrap replicates in the Phylip package.

Similar articles

See all similar articles

Cited by 52 articles

See all "Cited by" articles

References

    1. Wright HT. Introns and higher-order structure in the evolution of serpins. J Mol Evol. 1993;7:136–143. doi: 10.1007/BF00166249. - DOI
    1. Potempa J, Korzus E, Travis J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem. 1994;7:15957–15960. - PubMed
    1. Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC. An overview of the serpin superfamily. Genome Biol. 2006;7:216. doi: 10.1186/gb-2006-7-5-216. - DOI - PMC - PubMed
    1. Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O'Donnell E, Salvesen GS, Travis J, Whisstock JC. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins: evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem. 2001;7:33293–33296. doi: 10.1074/jbc.R100016200. - DOI - PubMed
    1. Schechter I, Berger A. On the size of the active site in proteases: I. Papain. Biochem Biophys Res Commun. 1967;7:157–162. doi: 10.1016/S0006-291X(67)80055-X. - DOI - PubMed

Publication types

LinkOut - more resources

Feedback