Successive domestication and evolution of the Andean potatoes as revealed by chloroplast DNA restriction endonuclease analysis

Theor Appl Genet. 1995 Mar;90(3-4):356-63. doi: 10.1007/BF00221977.

Abstract

Five chloroplast DNA (ctDNA) types (W, T, C, S, and A) have previously been identified in the Andean tetraploid cultivated potatoes (Solanum tuberosum ssp. andigena) and three types (C, S, and A) in diploid cultivated potatoes (S. stenotomum). In this study, ctDNA types were determined for an additional 35 accessions of S. stenotomum and 97 accessions of putative ancestral wild species (15 of S. brevicaule, 26 of S. bukasovii, 4 of S. candolleanum, 25 of S. canasense, 17 of S. leptophyes, and 10 of S. multidissectum). The first five ctDNA types were also identified in S. stenotomum. The wild species were also polymorphic for ctDNA types except for S. brevicaule, which had only W-type ctDNA. T-type ctDNA was not found in any of the wild species and could have originated from W-type ctDNA after S. stenotomum arose. The other types of ctDNA evolved in wild species. The geographical distribution of each ctDNA type indicated that A-type ctDNA arose in central Peru and T-type ctDNA in the Bolivia-Argentine boundary. It is implied that potatoes were successively domesticated and that, in parallel, several wild species were differentiated from time to time and place to place from the 'ancestral species' complex. Subsequent sexual polyploidization formed a wide ctDNA diversity among the Andean tetraploid potatoes, and selection from them formed the limited ctDNA diversity found in Chilean tetraploid potatoes (ssp. tuberosum).