Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014;20(22):3548-53.
doi: 10.2174/13816128113196660746.

Molecular mechanisms of endothelial NO synthase uncoupling

Affiliations
Review

Molecular mechanisms of endothelial NO synthase uncoupling

Suxin Luo et al. Curr Pharm Des. 2014.

Abstract

Nitric oxide (NO) is a gaseous signaling molecule and effector in various biological processes. In mammalian cells, NO is produced by a family of NO synthases (NOS). Three NOS isoforms have been identified as: neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). In addition to NO, NOS also produces superoxide anion. This phenomenon is named NOS uncoupling as superoxide generation mainly occurs when NOS is not coupled with its cofactor or substrate. nNOS was first found to produce superoxide under L-arginine depletion condition. Further studies demonstrated that superoxide production is a general feature of all three NOS isoforms. In particular, superoxide generated from uncoupled eNOS has been found to play critical roles in the process of various cardiovascular diseases. Although NOS was first found to produce superoxide only when uncoupled with its cofactor or substrate, recent studies reveal that oxygen reduction to superoxide is an intrinsic process amid NO synthesis. Tetrahydrobiopterin plays a controlling role in preventing superoxide release from the eNOS oxygenase domain. Besides tetrahydrobiopterin, the regulation of eNOS uncoupling by the interactions with other proteins, protein phosphorylation, S-glutathionylation, and endogenous L-arginine derivatives, will be discussed in this review.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources