A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment
- PMID: 24189060
- PMCID: PMC3868751
- DOI: 10.1074/jbc.M113.509653
A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment
Abstract
Parkinsonism typified by sporadic Parkinson disease is a prevalent neurodegenerative disease. Mutations in PINK1 (PTEN-induced putative kinase 1), a mitochondrial Ser/Thr protein kinase, or PARKIN, a ubiquitin-protein ligase, cause familial parkinsonism. The accumulation and autophosphorylation of PINK1 on damaged mitochondria results in the recruitment of Parkin, which ultimately triggers quarantine and/or degradation of the damaged mitochondria by the proteasome and autophagy. However, the molecular mechanism of PINK1 in dissipation of the mitochondrial membrane potential (ΔΨm) has not been fully elucidated. Here we show by fluorescence-based techniques that the PINK1 complex formed following a decrease in ΔΨm is composed of two PINK1 molecules and is correlated with intermolecular phosphorylation of PINK1. Disruption of complex formation by the PINK1 S402A mutation weakened Parkin recruitment onto depolarized mitochondria. The most disease-relevant mutations of PINK1 inhibit the complex formation. Taken together, these results suggest that formation of the complex containing dyadic PINK1 is an important step for Parkin recruitment onto damaged mitochondria.
Keywords: Mitochondria; Parkin; Parkinson Disease; Phosphorylation; Pink1.
Figures
Similar articles
-
PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria.Nat Commun. 2012;3:1016. doi: 10.1038/ncomms2016. Nat Commun. 2012. PMID: 22910362 Free PMC article.
-
Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment.J Cell Sci. 2015 Mar 1;128(5):964-78. doi: 10.1242/jcs.161000. Epub 2015 Jan 20. J Cell Sci. 2015. PMID: 25609704 Free PMC article.
-
Ubiquitin is phosphorylated by PINK1 to activate parkin.Nature. 2014 Jun 5;510(7503):162-6. doi: 10.1038/nature13392. Epub 2014 Jun 4. Nature. 2014. PMID: 24784582
-
N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase.Curr Genet. 2020 Aug;66(4):693-701. doi: 10.1007/s00294-020-01062-2. Epub 2020 Mar 10. Curr Genet. 2020. PMID: 32157382 Review.
-
Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade.J Biochem. 2016 Apr;159(4):379-85. doi: 10.1093/jb/mvv125. Epub 2016 Feb 2. J Biochem. 2016. PMID: 26839319 Free PMC article. Review.
Cited by
-
Canagliflozin Mitigates Diabetic Cardiomyopathy through Enhanced PINK1-Parkin Mitophagy.Int J Mol Sci. 2024 Jun 26;25(13):7008. doi: 10.3390/ijms25137008. Int J Mol Sci. 2024. PMID: 39000117 Free PMC article.
-
Evolving and Expanding the Roles of Mitophagy as a Homeostatic and Pathogenic Process.Physiol Rev. 2019 Jan 1;99(1):853-892. doi: 10.1152/physrev.00005.2018. Physiol Rev. 2019. PMID: 30540226 Free PMC article. Review.
-
Defective autophagy in Parkinson's disease: lessons from genetics.Mol Neurobiol. 2015 Feb;51(1):89-104. doi: 10.1007/s12035-014-8787-5. Epub 2014 Jul 4. Mol Neurobiol. 2015. PMID: 24990317 Review.
-
Prostaglandin F2α regulates mitochondrial dynamics and mitophagy in the bovine corpus luteum.Life Sci Alliance. 2023 May 15;6(7):e202301968. doi: 10.26508/lsa.202301968. Print 2023 Jul. Life Sci Alliance. 2023. PMID: 37188480 Free PMC article.
-
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease.Neuron. 2015 Jan 21;85(2):257-73. doi: 10.1016/j.neuron.2014.12.007. Neuron. 2015. PMID: 25611507 Free PMC article. Review.
References
-
- Imaizumi Y., Okada Y., Akamatsu W., Koike M., Kuzumaki N., Hayakawa H., Nihira T., Kobayashi T., Ohyama M., Sato S., Takanashi M., Funayama M., Hirayama A., Soga T., Hishiki T., Suematsu M., Yagi T., Ito D., Kosakai A., Hayashi K., Shouji M., Nakanishi A., Suzuki N., Mizuno Y., Mizushima N., Amagai M., Uchiyama Y., Mochizuki H., Hattori N., Okano H. (2012) Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol. Brain 5, 35. - PMC - PubMed
-
- Valente E. M., Abou-Sleiman P. M., Caputo V., Muqit M. M., Harvey K., Gispert S., Ali Z., Del Turco D., Bentivoglio A. R., Healy D. G., Albanese A., Nussbaum R., González-Maldonado R., Deller T., Salvi S., Cortelli P., Gilks W. P., Latchman D. S., Harvey R. J., Dallapiccola B., Auburger G., Wood N. W. (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 - PubMed
-
- Clark I. E., Dodson M. W., Jiang C., Cao J. H., Huh J. R., Seol J. H., Yoo S. J., Hay B. A., Guo M. (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 - PubMed
-
- Park J., Lee S. B., Lee S., Kim Y., Song S., Kim S., Bae E., Kim J., Shong M., Kim J. M., Chung J. (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161 - PubMed
-
- Yang Y., Gehrke S., Imai Y., Huang Z., Ouyang Y., Wang J. W., Yang L., Beal M. F., Vogel H., Lu B. (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl. Acad. Sci. U.S.A. 103, 10793–10798 - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
