Covariance between relatives in multibreed populations: additive model

Theor Appl Genet. 1993 Dec;87(4):423-30. doi: 10.1007/BF00215087.

Abstract

Covariance between relatives in a multibreed population was derived for an additive model with multiple unlinked loci. An efficient algorithm to compute the inverse of the additive genetic covariance matrix is given. For an additive model, the variance for a crossbred individual is a function of the additive variances for the pure breeds, the covariance between parents, and segregation variances. Provided that the variance of a crossbred individual is computed as presented here, the covariance between crossbred relatives can be computed using formulae for purebred populations. For additive traits the inverse of the genotypic covariance matrix given here can be used both to obtain genetic evaluations by best linear unbiased prediction and to estimate genetic parameters by maximum likelihood in multibreed populations. For nonadditive traits, the procedure currently used to analyze multibreed data can be improved using the theory presented here to compute additive covariances together with a suitable approximation for nonadditive covariances.