DNA polymerase δ-interacting protein 2 is a processivity factor for DNA polymerase λ during 8-oxo-7,8-dihydroguanine bypass

Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18850-5. doi: 10.1073/pnas.1308760110. Epub 2013 Nov 4.


The bypass of DNA lesions by the replication fork requires a switch between the replicative DNA polymerase (Pol) and a more specialized translesion synthesis (TLS) Pol to overcome the obstacle. DNA Pol δ-interacting protein 2 (PolDIP2) has been found to physically interact with Pol η, Pol ζ, and Rev1, suggesting a possible role of PolDIP2 in the TLS reaction. However, the consequences of PolDIP2 interaction on the properties of TLS Pols remain unknown. Here, we analyzed the effects of PolDIP2 on normal and TLS by five different human specialized Pols from three families: Pol δ (family B), Pol η and Pol ι (family Y), and Pol λ and Pol β (family X). Our results show that PolDIP2 also physically interacts with Pol λ, which is involved in the correct bypass of 8-oxo-7,8-dihydroguanine (8-oxo-G) lesions. This interaction increases both the processivity and catalytic efficiency of the error-free bypass of a 8-oxo-G lesion by both Pols η and λ, but not by Pols β or ι. Additionally, we provide evidence that PolDIP2 stimulates Pol δ without affecting its fidelity, facilitating the switch from Pol δ to Pol λ during 8-oxo-G TLS. PolDIP2 stimulates Pols λ and η mediated bypass of other common DNA lesions, such as abasic sites and cyclobutane thymine dimers. Finally, PolDIP2 silencing increases cell sensitivity to oxidative stress and its effect is further potentiated in a Pol λ deficient background, suggesting that PolDIP2 is an important mediator for TLS.

Keywords: DNA repair; auxiliary factor; oxidative damage.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromatography, Ion Exchange
  • DNA Damage / genetics*
  • DNA Polymerase beta / metabolism*
  • DNA Replication / physiology*
  • Electrophoretic Mobility Shift Assay
  • Escherichia coli
  • Fluorescence
  • Guanine / analogs & derivatives*
  • Guanine / metabolism
  • Humans
  • Immunoprecipitation
  • Kinetics
  • Nuclear Proteins / metabolism*
  • Oligonucleotides / genetics
  • RNA, Small Interfering / genetics


  • Nuclear Proteins
  • Oligonucleotides
  • POLDIP2 protein, human
  • RNA, Small Interfering
  • 8-hydroxyguanine
  • Guanine
  • DNA polymerase beta2
  • DNA Polymerase beta