New approaches for studying synaptic development, function, and plasticity using Drosophila as a model system

J Neurosci. 2013 Nov 6;33(45):17560-8. doi: 10.1523/JNEUROSCI.3261-13.2013.


The fruit fly Drosophila melanogaster has been established as a premier experimental model system for neuroscience research. These organisms are genetically tractable, yet their nervous systems are sufficiently complex to study diverse processes that are conserved across metazoans, including neural cell fate determination and migration, axon guidance, synaptogenesis and function, behavioral neurogenetics, and responses to neuronal injury. For several decades, Drosophila neuroscientists have taken advantage of a vast toolkit of genetic and molecular techniques to reveal fundamental principles of neuroscience illuminating to all systems, including the first behavioral mutants from Seymour Benzer's pioneering work in the 1960s and 1970s, the cloning of the first potassium channel in the 1980s, and the identification of the core genes that orchestrate axon guidance and circadian rhythms in the 1990s. Over the past decade, new tools and innovations in genetic, imaging, and electrophysiological technologies have enabled the visualization, in vivo, of dynamic processes in synapses with unprecedented resolution. We will review some of the fresh insights into synaptic development, function, and plasticity that have recently emerged in Drosophila with an emphasis on the unique advantages of this model system.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Behavior, Animal / physiology
  • Drosophila / physiology*
  • Neurogenesis / physiology
  • Neuronal Plasticity / physiology*
  • Neurons / physiology*
  • Synapses / physiology*