Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding

J Am Chem Soc. 2013 Dec 11;135(49):18536-48. doi: 10.1021/ja4086758. Epub 2013 Nov 26.

Abstract

We demonstrate that metal carboxylate complexes (L-M(O2CR)2, R = oleyl, tetradecyl, M = Cd, Pb) are readily displaced from carboxylate-terminated ME nanocrystals (ME = CdSe, CdS, PbSe, PbS) by various Lewis bases (L = tri-n-butylamine, tetrahydrofuran, tetradecanol, N,N-dimethyl-n-butylamine, tri-n-butylphosphine, N,N,N',N'-tetramethylbutylene-1,4-diamine, pyridine, N,N,N',N'-tetramethylethylene-1,2-diamine, n-octylamine). The relative displacement potency is measured by (1)H NMR spectroscopy and depends most strongly on geometric factors such as sterics and chelation, although also on the hard/soft match with the cadmium ion. The results suggest that ligands displace L-M(O2CR)2 by cooperatively complexing the displaced metal ion as well as the nanocrystal. Removal of up to 90% of surface-bound Cd(O2CR)2 from CdSe and CdS nanocrystals decreases the Cd/Se ratio from 1.1 ± 0.06 to 1.0 ± 0.05, broadens the 1S(e)-2S(3/2h) absorption, and decreases the photoluminescence quantum yield (PLQY) from 10% to <1% (CdSe) and from 20% to <1% (CdS). These changes are partially reversed upon rebinding of M(O2CR)2 at room temperature (∼60%) and fully reversed at elevated temperature. A model is proposed in which electron-accepting M(O2CR)2 complexes (Z-type ligands) reversibly bind to nanocrystals, leading to a range of stoichiometries for a given core size. The results demonstrate that nanocrystals lack a single chemical formula, but are instead dynamic structures with concentration-dependent compositions. The importance of these findings to the synthesis and purification of nanocrystals as well as ligand exchange reactions is discussed.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Binding Sites
  • Carboxylic Acids / chemistry*
  • Chalcogens / chemistry*
  • Ligands
  • Metals / chemistry*
  • Nanoparticles*
  • Quantum Theory
  • Temperature

Substances

  • Carboxylic Acids
  • Chalcogens
  • Ligands
  • Metals