The synthesis of magnetic lysozyme-imprinted polymers by means of distillation-precipitation polymerization for selective protein enrichment

Chem Asian J. 2014 Feb;9(2):526-33. doi: 10.1002/asia.201300937. Epub 2013 Nov 6.


A protein imprinting approach for the synthesis of core-shell structure nanoparticles with a magnetic core and molecularly imprinted polymer (MIP) shell was developed using a simple distillation-precipitation polymerization method. In this work, Fe3O4 magnetic nanoparticles were first synthesized through a solvothermal method and then were conveniently surface-modified with 3-(methacryloyloxy)propyltrimethoxylsilane as anchor molecules to donate vinyl groups. Next a high-density MIP shell was coated onto the surface of the magnetic nanoparticles by the copolymerization of functional monomer acrylamide (AAm), cross-linking agent N,N'-methylenebisacrylamide (MBA), the initiator azodiisobutyronitrile (AIBN), and protein in acetonitrile heated at reflux. The morphology, adsorption, and recognition properties of the magnetic molecularly imprinted nanoparticles were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and rebinding experiments. The resulting MIP showed a high adsorption capacity (104.8 mg g(-1)) and specific recognition (imprinting factor=7.6) to lysozyme (Lyz). The as-prepared Fe3O4@Lyz-MIP nanoparticles with a mean diameter of 320 nm were coated with an MIP shell that was 20 nm thick, which enabled Fe3O4@Lyz-MIP to easily reach adsorption equilibrium. The high magnetization saturation (40.35 emu g(-1)) endows the materials with the convenience of magnetic separation under an external magnetic field and allows them to be subsequently reused. Furthermore, Fe3O4@Lyz-MIP could selectively extract a target protein from real egg-white samples under an external magnetic field.

Keywords: imprinting; magnetic properties; nanoparticles; polymerization; proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ferrosoferric Oxide / chemistry
  • Kinetics
  • Magnetite Nanoparticles / chemistry*
  • Molecular Imprinting*
  • Muramidase / chemistry*
  • Muramidase / metabolism
  • Polymerization
  • Polymers / chemistry*
  • Silanes / chemistry
  • Spectroscopy, Fourier Transform Infrared
  • Thermogravimetry


  • Magnetite Nanoparticles
  • Polymers
  • Silanes
  • Muramidase
  • Ferrosoferric Oxide