A cytolytic pore-forming protein (PFP, perforin) was purified from isolated granules of cloned NK-like cytolytic cells, which showed an apparent Mr of 70-75 kd (reduced) and 62-66 kd (nonreduced). Cytolysis produced by this protein occurred only in the presence of Ca2+ and was accompanied by the formation of membrane lesions of 160 A diameter. The purified protein depolarized cells and made lipid vesicles leaky to monovalent and divalent ions. This protein formed large, voltage insensitive and nonselective ion channels in planar bilayers that remained preferentially in the open state. The channels were heterogeneous in size distribution averaging 400 pS/U in 0.1 M NaCl. The membrane lesions formed by PFP were morphologically and functionally similar to those formed by intact NK-like cells and their granules. This PFP could be released from granules during cell killing, followed by its polymerization on target membranes to form large transmembrane pores.