Dynamics of carbon-hydrogen and carbon-methyl exchanges in the collision of 3P atomic carbon with propene

J Chem Phys. 2013 Nov 7;139(17):174317. doi: 10.1063/1.4828842.

Abstract

We investigated the dynamics of the reaction of (3)P atomic carbon with propene (C3H6) at reactant collision energy 3.8 kcal mol(-1) in a crossed molecular-beam apparatus using synchrotron vacuum-ultraviolet ionization. Products C4H5, C4H4, C3H3, and CH3 were observed and attributed to exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3; their translational-energy distributions and angular distributions were derived from the measurements of product time-of-flight spectra. Following the addition of a (3)P carbon atom to the C=C bond of propene, cyclic complex c-H2C(C)CHCH3 undergoes two separate stereoisomerization mechanisms to form intermediates E- and Z-H2CCCHCH3. Both the isomers of H2CCCHCH3 in turns decompose to C4H5 + H and C3H3 + CH3. A portion of C4H5 that has enough internal energy further decomposes to C4H4 + H. The three exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3 have average translational energy releases 13.5, 3.2, and 15.2 kcal mol(-1), respectively, corresponding to fractions 0.26, 0.41, and 0.26 of available energy deposited to the translational degrees of freedom. The H-loss and 2H-loss channels have nearly isotropic angular distributions with a slight preference at the forward direction particularly for the 2H-loss channel. In contrast, the CH3-loss channel has a forward and backward peaked angular distribution with an enhancement at the forward direction. Comparisons with reactions of (3)P carbon atoms with ethene, vinyl fluoride, and vinyl chloride are stated.