Purpose: The aim of this research was to examine, in an exploratory manner, whether cross-sectional multiple imputation generates valid parameter estimates for a latent growth curve model in a longitudinal data set with nonmonotone missingness.
Methods: A simulated longitudinal data set of N = 5000 was generated and consisted of a continuous dependent variable, assessed at three measurement occasions and a categorical time-invariant independent variable. Missing data had a nonmonotone pattern and the proportion of missingness increased from the initial to the final measurement occasion (5%-20%). Three methods were considered to deal with missing data: listwise deletion, full-information maximum likelihood, and multiple imputation. A latent growth curve model was specified and analysis of variance was used to compare parameter estimates between the full data set and missing data approaches.
Results: Multiple imputation resulted in significantly lower slope variance compared with the full data set. There were no differences in any parameter estimates between the multiple imputation and full-information maximum likelihood approaches.
Conclusions: This study suggested that in longitudinal studies with nonmonotone missingness, cross-sectional imputation at each time point may be viable and produces estimates comparable with those obtained with full-information maximum likelihood. Future research pursuing the validity of this method is warranted.
Keywords: Latent growth curve model; Longitudinal studies; Missing data; Multiple imputation; Statistical; Structural equation model; models.
Copyright © 2014 Elsevier Inc. All rights reserved.