Targeting and mimicking collagens via triple helical peptide assembly

Curr Opin Chem Biol. 2013 Dec;17(6):968-75. doi: 10.1016/j.cbpa.2013.10.018. Epub 2013 Nov 5.

Abstract

As the major structural component of the extracellular matrix, collagen plays a crucial role in tissue development and regeneration. Since structural and metabolic abnormalities of collagen are associated with numerous debilitating diseases and pathologic conditions, the ability to target collagens of diseased tissues could lead to new diagnostics and therapeutics. Collagen is also a natural biomaterial widely used in drug delivery and tissue engineering, and construction of synthetic collagen-like materials is gaining interests in the biomaterials community. The unique triple helical structure of collagen has been explored for targeting collagen strands, and for engineering collagen-like functional assemblies and conjugates. This review focuses on the forefront of research activities in the use of the collagen mimetic peptide for both targeting and mimicking collagens via its triple helix mediated strand hybridization and higher order assembly.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Biocompatible Materials / chemistry*
  • Biomimetics
  • Collagen / chemistry*
  • Collagen / ultrastructure
  • Humans
  • Models, Molecular
  • Molecular Sequence Data
  • Peptides / chemistry*
  • Protein Structure, Secondary

Substances

  • Biocompatible Materials
  • Peptides
  • Collagen