Period and phase control by temperature in the circadian rhythm of carbon dioxide fixation in illuminated leaves of Bryophyllum fedtschenkoi

Planta. 1989 Apr;177(4):456-69. doi: 10.1007/BF00392613.

Abstract

The rhythm of CO2 assimilation exhibited by leaves of Bryophyllum fedtschenkoi maintained in light and normal air occurs only at constant ambient temperatures between 10°C and 30°C. Over this range the period increases linearly with increasing temperature from the extremely low value of 15.7 h to 23.3 h, but shows a considerable degree of temperature compensation. Outside the range 10°C-30°C the rhythm is inhibited but re-starts on changing the temperature to 15°C. Prolonged exposure of leaves to high (40°C) and low (2°C) temperature inhibits the rhythm by driving the basic oscillator to fixed phase points in the cycle which differ by 180°, and which have been characterised in terms of the malate status of the leaf cells. At both temperatures loss of the circadian rhythm of CO2 assimilation is due to the inhibition of phosphoenolpyruvate carboxylase (PEPCase) activity, but the inhibition is apparently achieved in different ways at 40°C and 2°C. High temperature appears to inhibit directly PEPCase activity, but not the activity of the enzymes responsible for the breakdown of malate, with the result that the leaf acquires a low malate status. In contrast, low temperature does not directly inhibit PEPCase activity, but does inhibit enzymes responsible for malate breakdown, so that the malate level in the leaf increases to a high value and PEPCase is eventually allosterically inhibited. The different malate status of leaves held at these two temperatures accounts for the phases of the rhythms being reversed on returning the leaves to 15°C. After exposure to high temperature, CO2 fixation by PEPCase activity can begin immediately, whereas after exposure to low temperature, the large amount of malate accumulated in the leaves has to be decarboxylated before CO2 fixation can begin.