Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 38 (6), 837-45

Expression of VEGF-related Proteins in Cultured Human Brain Microvascular Endothelial Cells and Pericytes After Exposure to Methylmercury

Affiliations

Expression of VEGF-related Proteins in Cultured Human Brain Microvascular Endothelial Cells and Pericytes After Exposure to Methylmercury

Takashi Hirooka et al. J Toxicol Sci.

Abstract

The localization of neuropathological lesions along deep sulci and fissures is one of the characteristics of a cerebrum damaged by methylmercury. Edematous changes in white matter have been proposed as the cause of the localization of lesions; however, the molecular mechanisms underlying methylmercury-induced edema remain unclear. Since the vascular endothelial growth factor (VEGF) system regulates vascular permeability and can be involved in the progression of edematous changes, we examined the effect of methylmercury on the expression of VEGF-related proteins in cultured human brain microvascular endothelial cells and pericytes. After methylmercury exposure, mRNA and protein levels of VEGF-A in pericytes and placenta growth factor (PlGF) and VEGF-receptor-1/-2 in endothelial cells were elevated. The induction of pericyte VEGF-A expression was independent of hypoxia-inducible factor-α and hypoxia-response element signaling. Taken together, these results suggest that methylmercury activates the VEGF system in brain microvessels in a paracrine fashion. When the activation occurs in narrow areas such as along the deep sulci in the cerebrum, hyperpermeability and subsequent edematous changes would cause a circulatory disturbance and result in neural cell damage. We propose this as a reason for the localization of the neuropathological lesions along the deep sulci and fissures in the cerebral cortex, such as the calcarine fissure, in patients with Minamata disease.

Similar articles

See all similar articles

Cited by 5 articles

Publication types

MeSH terms

Substances

Feedback