We examined mercury (Hg) biogeochemistry and biomagnification in the Babeni Reservoir, a system strongly affected by the release of Hg from a chlor-alkali plant. Total mercury (THg) concentrations in river water reached 88 ng L(-1) but decreased rapidly in the reservoir (to 9 ng L(-1)). In contrast, monomethylmercury (MMHg) concentrations increased from the upstream part of the reservoir to the central part (0.7 ng L(-1)), suggesting high methylation within the reservoir. Moreover, vertical water column profiles of THg and MMHg indicated that Hg methylation mainly occurred deep in the water column and at the sediment-water interface. The discharge of Hg from a chlor-alkali plant in Valcea region caused the highest MMHg concentrations ever found in non-piscivorous fish worldwide. MMHg concentrations and bioconcentration factors (BCF) of plankton and macrophytes revealed that the highest biomagnification of MMHg takes place in primary producers.
Keywords: Biomagnification; Chlor-alkali; Fish; Mercury; Methylation; Reservoir.
Copyright © 2013 Elsevier Ltd. All rights reserved.