Municipal effluents are known to impede the immune system of aquatic organisms. The purpose of this study was to examine the immunotoxicity of urban wastewaters before and after 6 treatment processes from 12 cities toward trout leucocytes. Freshly prepared trout leucocytes were exposed to increasing concentrations of solid phase (C18) extracts of wastewaters for 24 hr at 150C. Immunocompetence was determined by following changes in leucocyte viability and the proportion of cells able to ingest at least one (immunoactivity) and at least three (immunoefficiency) fluorescent beads. The influents were treated by six different treatment strategies consisting of facultative aerated lagoons, activated sludge, biological aerated filter, biological nutrient removal, chemically-assisted physical treatment and trickling filter/solid contact. Water quality parameters of the wastewaters revealed that the plants effectively removed total suspended solids and reduced the chemical oxygen demand. The results revealed that the effluents' immunotoxic properties were generally more influenced by the properties of the untreated wastewaters than by the treatment processes. About half of the incoming influents decreased leucocyte viability while 4 treatment plants were able to reduce toxicity. The influents readily increased phagocytosis activity for 8/12 influents while it was decreased in 4/12 influents. This increase was abolished for 4/12 of the effluents using treatments involving biological and oxidative processes. In conclusion, municipal effluents have the potential to alter the immune system in fish and more research will be needed to improve the treatments of wastewaters to better protect the quality of the aquatic environment.