Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous oceans

PLoS One. 2013 Nov 6;8(11):e79420. doi: 10.1371/journal.pone.0079420. eCollection 2013.


The Late Cretaceous (∼95-66 million years ago) western North American landmass of Laramidia displayed heightened non-marine vertebrate diversity and intracontinental regionalism relative to other latest Cretaceous Laurasian ecosystems. Processes generating these patterns during this interval remain poorly understood despite their presumed role in the diversification of many clades. Tyrannosauridae, a clade of large-bodied theropod dinosaurs restricted to the Late Cretaceous of Laramidia and Asia, represents an ideal group for investigating Laramidian patterns of evolution. We use new tyrannosaurid discoveries from Utah--including a new taxon which represents the geologically oldest member of the clade--to investigate the evolution and biogeography of Tyrannosauridae. These data suggest a Laramidian origin for Tyrannosauridae, and implicate sea-level related controls in the isolation, diversification, and dispersal of this and many other Late Cretaceous vertebrate clades.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biological Evolution*
  • Dinosaurs* / anatomy & histology
  • Ecological and Environmental Phenomena*
  • Oceans and Seas*
  • Paleontology*
  • Skull / anatomy & histology

Grant support

Fieldwork and research were funded by the National Science Foundation (EAR 0745454), the Bureau of Land Management, and the Natural History Museum of Utah. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.