The correlation between crassulacean acid metabolism and water uptake in Senecio medley-woodii

Planta. 1985 Sep;166(1):57-66. doi: 10.1007/BF00397386.

Abstract

The combination of a chamber for CO2 gas exchange with a potometric measuring arrangement allowed concomitant investigations into CO2 gas exchange, transpiration and water uptake by the roots of whole plants of Senecio medley-woodii, a species which exhibits Crassulacean acid metabolism. The water-uptake rate showed the same daily pattern as malate concentration and osmotic potential. The accumulation of organic acids resulting from nocturnal CO2 fixation enhanced the water-uptake rate from dusk to dawn. During the day the water-uptake rates decreased with decreasing organic-acid concentration. With gradually increasing water stress, CO2 dark fixation of S. medley-woodii was increased as long as water could be taken up by the roots. It was also shown that a reestablished water supply after drought caused a similar increase which in both cases ameliorated the water uptake in order to conserve a positive water balance for as long as possible. This water-uptake pattern shows that Crassulacean acid metabolism is not only a water-saving adaptation but also enhances water uptake and is directly correlated with the amelioration of the plant water status.