Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution

Science. 2013 Nov 22;342(6161):976-9. doi: 10.1126/science.1244730.

Abstract

The molecular basis of antigenic drift was determined for the hemagglutinin (HA) of human influenza A/H3N2 virus. From 1968 to 2003, antigenic change was caused mainly by single amino acid substitutions, which occurred at only seven positions in HA immediately adjacent to the receptor binding site. Most of these substitutions were involved in antigenic change more than once. Equivalent positions were responsible for the recent antigenic changes of influenza B and A/H1N1 viruses. Substitution of a single amino acid at one of these positions substantially changed the virus-specific antibody response in infected ferrets. These findings have potentially far-reaching consequences for understanding the evolutionary mechanisms that govern influenza viruses.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Substitution / genetics
  • Amino Acid Substitution / immunology
  • Antigens, Viral / genetics
  • Antigens, Viral / immunology*
  • Binding Sites / genetics
  • Evolution, Molecular*
  • Hemagglutinin Glycoproteins, Influenza Virus / genetics
  • Hemagglutinin Glycoproteins, Influenza Virus / immunology*
  • Humans
  • Influenza A Virus, H3N2 Subtype / genetics
  • Influenza A Virus, H3N2 Subtype / immunology*
  • Mutation

Substances

  • Antigens, Viral
  • Hemagglutinin Glycoproteins, Influenza Virus