As the first in class steroid 17α-hydroxylase/C17,20-lyase (CYP17) inhibitor, abiraterone acetate (of which the active metabolite is abiraterone) has been shown to improve overall survival in patients with castration-resistant prostate cancer (CRPC)--in those who are chemotherapy-naive and those previously treated with docetaxel. Furthermore, the clinical success of abiraterone demonstrated that CRPC, which has previously been regarded as an androgen-independent disease, is still driven, at least in part, by androgens. More importantly, abiraterone is a 'promiscuous' drug that interacts with a number of targets, which dictate its clinical benefits and adverse effects profile. Besides CYP17 inhibition, abiraterone acts as an antagonist to the androgen receptor and inhibits 3β-hydroxysteroid dehydrogenase--two effects that potentially contribute to its antitumour effects. However, the inhibition of the 17α-hydroxylase activity of CYP17, CYP11B1 and a panel of hepatic CYP enzymes leads to adverse effects and toxicities that include secondary mineralocorticoid excess. Abiraterone is also associated with increased incidence of cardiac disorders. Under such circumstances, development of new CYP17 inhibitors as an additional line of defence is urgently needed. To achieve enhanced clinical benefits, new strategies are being explored that include selective inhibition of the C17,20-lyase activity of CYP17 and multi-targeting strategies that affect androgen synthesis and signalling at different points. Some of these strategies-including the drugs orteronel, VT-464 and galeterone--are supported by preclinical data and are being explored in the clinic.