Photochemical electronic doping of colloidal CdSe nanocrystals

J Am Chem Soc. 2013 Dec 18;135(50):18782-5. doi: 10.1021/ja410825c. Epub 2013 Dec 3.

Abstract

A method for electronic doping of colloidal CdSe nanocrystals (NCs) is reported. Anaerobic photoexcitation of CdSe NCs in the presence of a borohydride hole quencher, Li[Et3BH], yields colloidal n-type CdSe NCs possessing extra conduction-band electrons compensated by cations deposited by the hydride hole quencher. The photodoped NCs possess excellent optical quality and display the key spectroscopic signatures associated with NC n-doping, including a bleach at the absorption edge, appearance of a new IR absorption band, and Auger quenching of the excitonic photoluminescence. Although stable under anaerobic conditions, these spectroscopic changes are all reversed completely upon exposure of the n-doped NCs to air. Chemical titration of the added electrons confirms previous correlations between absorption bleach and electron accumulation and provides a means of quantifying the extent of electron trapping in some NCs. The generality of this photodoping method is demonstrated by initial results on colloidal CdE (E = S, Te) NCs as well as on CdSe quantum dot films.