Inborn errors of metabolism and expanded newborn screening: review and update

Crit Rev Clin Lab Sci. 2013 Nov;50(6):142-62. doi: 10.3109/10408363.2013.847896.


Inborn errors of metabolism (IEM) are a phenotypically and genetically heterogeneous group of disorders caused by a defect in a metabolic pathway, leading to malfunctioning metabolism and/or the accumulation of toxic intermediate metabolites. To date, more than 1000 different IEM have been identified. While individually rare, the cumulative incidence has been shown to be upwards of 1 in 800. Clinical presentations are protean, complicating diagnostic pathways. IEM are present in all ethnic groups and across every age. Some IEM are amenable to treatment, with promising outcomes. However, high clinical suspicion alone is not sufficient to reduce morbidities and mortalities. In the last decade, due to the advent of tandem mass spectrometry, expanded newborn screening (NBS) has become a mandatory public health strategy in most developed and developing countries. The technology allows inexpensive simultaneous detection of more than 30 different metabolic disorders in one single blood spot specimen at a cost of about USD 10 per baby, with commendable analytical accuracy and precision. The sensitivity and specificity of this method can be up to 99% and 99.995%, respectively, for most amino acid disorders, organic acidemias, and fatty acid oxidation defects. Cost-effectiveness studies have confirmed that the savings achieved through the use of expanded NBS programs are significantly greater than the costs of implementation. The adverse effects of false positive results are negligible in view of the economic health benefits generated by expanded NBS and these could be minimized through increased education, better communication, and improved technologies. Local screening agencies should be given the autonomy to develop their screening programs in order to keep pace with international advancements. The development of biochemical genetics is closely linked with expanded NBS. With ongoing advancements in nanotechnology and molecular genomics, the field of biochemical genetics is still expanding rapidly. The potential of tandem mass spectrometry is extending to cover more disorders. Indeed, the use of genetic markers in T-cell receptor excision circles for severe combined immunodeficiency is one promising example. NBS represents the highest volume of genetic testing. It is more than a test and it warrants systematic healthcare service delivery across the pre-analytical, analytical, and post-analytical phases. There should be a comprehensive reporting system entailing genetic counselling as well as short-term and long-term follow-up. It is essential to integrate existing clinical IEM services with the expanded NBS program to enable close communication between the laboratory, clinicians, and allied health parties. In this review, we will discuss the history of IEM, its clinical presentations in children and adult patients, and its incidence among different ethnicities; the history and recent expansion of NBS, its cost-effectiveness, associated pros and cons, and the ethical issues that can arise; the analytical aspects of tandem mass spectrometry and post-analytical perspectives regarding result interpretation.

Publication types

  • Review

MeSH terms

  • Global Health
  • Humans
  • Incidence
  • Infant, Newborn
  • Legislation, Medical
  • Metabolism, Inborn Errors / diagnosis*
  • Metabolism, Inborn Errors / epidemiology
  • Metabolism, Inborn Errors / genetics
  • Metabolism, Inborn Errors / physiopathology
  • Neonatal Screening / legislation & jurisprudence
  • Neonatal Screening / methods*
  • Neonatal Screening / trends
  • Parental Consent / legislation & jurisprudence