Biological effects of blocking blue and other visible light on the mouse retina

Clin Exp Ophthalmol. 2014 Aug;42(6):555-63. doi: 10.1111/ceo.12253. Epub 2013 Dec 4.


Background: To elucidate the biological effects of blocking fluorescent light on the retina using specific blocking materials.

Methods: Seven- to 8-week-old BALB/c mice were divided into three groups and placed in one of the three boxes: one blocked ultraviolet and violet wavelengths of light (violet blockade), one blocked ultraviolet, violet, blue and some other visible wavelengths (blue-plus blockade), and one allowed most visible light to pass through (control). They were then exposed to a white fluorescent lamp for 1 h at 5.65E-05 mW/cm(2) /s. After treatment, the electroretinogram, retinal outer nuclear layer thickness and retinal outer segment length were measured. In addition, retinal apoptotic cells were quantified by TdT-mediated dUTP nick-end labelling assay and c-Fos messenger RNA, and protein levels were measured by real-time reverse-transcription polymerase chain reaction and immunoblot analyses, respectively.

Results: The blue-plus blockade group retained a significantly better electroretinogram response following light exposure than the control or violet blockade groups. The blue-plus blockade group also exhibited greater outer nuclear layer thickness and greater outer-segment length, and fewer apoptotic cells after light exposure than the other groups. The c-Fos messenger RNA and protein levels were substantially reduced in the blue-plus blockade group and reduced to a lesser extent in the violet blockade group.

Conclusions: The blockade of blue plus additional visible wavelengths of light was most effective in protecting the retina from light-induced damage. The blockade of violet light alone was also effective in reducing intracellular molecular responses, but these effects were not sufficient for attenuating retinal degeneration.

Keywords: apoptosis; c-Fos; light; photoreceptor; retina.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / radiation effects
  • Electroretinography
  • Immunoenzyme Techniques
  • In Situ Nick-End Labeling
  • Light / adverse effects*
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Proto-Oncogene Proteins c-fos / genetics
  • Proto-Oncogene Proteins c-fos / metabolism
  • RNA, Messenger / genetics
  • Radiation Injuries, Experimental / metabolism
  • Radiation Injuries, Experimental / physiopathology
  • Radiation Injuries, Experimental / prevention & control*
  • Radiation Protection / methods*
  • Real-Time Polymerase Chain Reaction
  • Retina / physiology*
  • Retinal Degeneration / metabolism
  • Retinal Degeneration / physiopathology
  • Retinal Degeneration / prevention & control*
  • Retinal Neurons
  • Retinal Photoreceptor Cell Outer Segment / pathology
  • Ultraviolet Rays / adverse effects*


  • Proto-Oncogene Proteins c-fos
  • RNA, Messenger