Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jan;168(1):153-9.
doi: 10.1016/0014-4827(87)90424-1.

The in vitro lifespan of MRC-5 cells is shortened by 5-azacytidine-induced demethylation

The in vitro lifespan of MRC-5 cells is shortened by 5-azacytidine-induced demethylation

D S Fairweather et al. Exp Cell Res. 1987 Jan.

Abstract

The minor base 5-methylcytosine (5mC) in DNA may be important for the regulation of gene expression. Random loss of 5mC may occur during pre-replicative DNA synthesis in mortal cell strains, and thus give rise to biochemical aberrations in aging cells. 5-Azacytidine (5azaC) was used to induce loss of 5mC in DNA of human diploid fibroblasts (MRC-5) in an attempt to accelerate in vitro senescence. The 5mC content of DNA was measured by incorporation of [3H]uridine into dividing cells, hydrolysis of DNA and separation of bases by HPLC. In untreated MRC-5 cells, 5mC was 3.6% of the total cytosine (C+5mC) at population doubling (PD) 20 (28% of lifespan) and fell to 1.6% at PD 67 (97% of lifespan). A single pulse treatment with 5azaC (1 microgram/ml) induced demethylation and shortened the lifespan by 10% (6.8 PDs loss). Pulse-treated cells showed temporary growth inhibition, though they subsequently regained normal growth rate and morphology. However, uniform treatment with 0.1 microgram/ml 5azaC between PD 20 and 23 produced no immediate growth inhibition, but a 22% loss of 5mC and 25% decrement in lifespan (16.6 PDs loss). The present results indicate that 5mC levels fall during normal aging of MRC-5 cells and accelerated 5mC loss shortens the in vitro lifespan of these cells. Hypomethylation may thus be responsible for some aspects of in vitro aging.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources