Evolutionary dynamics of overlapped genes in Salmonella

PLoS One. 2013 Nov 29;8(11):e81016. doi: 10.1371/journal.pone.0081016. eCollection 2013.

Abstract

Presence of overlapping genes (OGs) is a common phenomenon in bacterial genomes. Most frequently, overlapping genes share coding regions with as few as one nucleotide to as many as thousands of nucleotides. Overlapping genes are often co-regulated, transcriptionally and translationally. Overlapping genes are also subject to the whims of evolution, as the gene overlap is known to be disrupted in some species/strains and participating genes are sometimes lost in independent lineages. Therefore, a better understanding of evolutionary patterns and rates of the disruption of overlapping genes is an important component of genome structure and evolution of gene function. In this study, we investigate the fate of ancestrally overlapping genes in complete genomes from 15 contemporary strains of Salmonella species. We find that the fates of overlapping genes inside and outside operons are distinctly different. A larger fraction of overlapping genes inside operons conserves their overlap as compared to gene pairs outside of the operons (average 0.89 vs. 0.83 per genome). However, when overlapping genes in the operons separate, one partner is lost more frequently than in those separated genes outside of operons (average 0.02 vs. 0.01 per genome). We also investigate the fate of a pan set of overlapping genes at the present and ancestral nodes over a phylogenetic tree based on genome sequence data, respectively. We propose that co-regulation plays important roles on the fates of genes. Furthermore, a vast majority of disruptions occurred prior to the common ancestor of all 15 Salmonella strains, which enables us to obtain an estimate of disruptions between Salmonella and E. coli.

MeSH terms

  • Escherichia coli / genetics
  • Evolution, Molecular*
  • Genes, Overlapping*
  • Genome
  • Phylogeny
  • Salmonella / classification
  • Salmonella / genetics*

Grants and funding

These authors have no support or funding to report.