Recent investigations surprisingly indicate that single RNA "stem-loops" operate solely by chemical laws that act without selective forces, and in contrast, self-ligated consortia of RNA stem-loops operate by biological selection. To understand consortial RNA selection, the concept of single quasi-species and its mutant spectra as drivers of RNA variation and evolution is rethought here. Instead, we evaluate the current RNA world scenario in which consortia of cooperating RNA stem-loops (not individuals) are the basic players. We thus redefine quasispecies as RNA quasispecies consortia (qs-c) and argue that it has essential behavioral motifs that are relevant to the inherent variation, evolution and diversity in biology. We propose that qs-c is an especially innovative force. We apply qs-c thinking to RNA stem-loops and evaluate how it yields altered bulges and loops in the stem-loop regions, not as errors, but as a natural capability to generate diversity. This basic competence-not error-opens a variety of combinatorial possibilities which may alter and create new biological interactions, identities and newly emerged self identity (immunity) functions. Thus RNA stem-loops typically operate as cooperative modules, like members of social groups. From such qs-c of stem-loop groups we can trace a variety of RNA secondary structures such as ribozymes, viroids, viruses, mobile genetic elements as abundant infection derived agents that provide the stem-loop societies of small and long non-coding RNAs.
Keywords: Cooperative interactions; Evolution; Infectious agents; Quasispecies; RNA stem-loops.