Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec;11(12):e1001735.
doi: 10.1371/journal.pbio.1001735. Epub 2013 Dec 17.

Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli

Affiliations

Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli

Bentley Lim et al. PLoS Biol. 2013 Dec.

Abstract

All cells must adapt to rapidly changing conditions. The heat shock response (HSR) is an intracellular signaling pathway that maintains proteostasis (protein folding homeostasis), a process critical for survival in all organisms exposed to heat stress or other conditions that alter the folding of the proteome. Yet despite decades of study, the circuitry described for responding to altered protein status in the best-studied bacterium, E. coli, does not faithfully recapitulate the range of cellular responses in response to this stress. Here, we report the discovery of the missing link. Surprisingly, we found that σ(32), the central transcription factor driving the HSR, must be localized to the membrane rather than dispersed in the cytoplasm as previously assumed. Genetic analyses indicate that σ(32) localization results from a protein targeting reaction facilitated by the signal recognition particle (SRP) and its receptor (SR), which together comprise a conserved protein targeting machine and mediate the cotranslational targeting of inner membrane proteins to the membrane. SRP interacts with σ(32) directly and transports it to the inner membrane. Our results show that σ(32) must be membrane-associated to be properly regulated in response to the protein folding status in the cell, explaining how the HSR integrates information from both the cytoplasm and bacterial cell membrane.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Homeostatic control circuits of σ32.
(A) Current and (B) revised model for activity and degradation control of σ32. The revised model incorporates SRP-mediated trafficking of σ32 to the membrane. Interactions validated in vitro are shown as solid lines; those inferred from in vivo data are shown as dashed lines. Newly identified interactions are shown in red.
Figure 2
Figure 2. σ32 binds to Ffh.
(A) Schematic representation of E. coli SRP (Ffh+4.5S RNA), indicating experimentally confirmed functions associated with each domain. (B) σ32 co-immunoprecipitates with Ffh and FtsY in vivo, but σ70 does not. Immunoprecipitations of Ffh or FtsY were carried out on lysates of Δσ32 and ΔftsH cells grown to exponential phase. Immunocomplexes were isolated, analyzed by SDS-PAGE, and immunoblotted with anti-σ32 and anti-σ70 antibodies. Proteins from approximately 15-fold more cells were loaded onto the gel for the immunoprecipitated samples against σ32 and σ70 as compared with the lysate samples. (C) Protein–protein interaction analysis indicates that σ32 binds to Ffh, but not FtsY. Purified FtsY and Ffh were run on a 10% SDS-PAGE gel, transferred to nitrocellulose, re-natured, and incubated with purified WTσ32. The Coomassie-stained gel (left) and the nitrocellulose blot probed with polyclonal anti-σ32 antibodies (right) are shown. (D) σ32 binds to the M-domain of Ffh. Ffh, partially digested by endopeptidase V8, was resolved on a 10% SDS-PAGE gel, transferred to nitrocellulose, and incubated with σ32. The Coomassie-stained gel (left) and the nitrocellulose membrane, containing transferred Ffh fragments, probed against σ32 (right) are shown.
Figure 3
Figure 3. In vivo cross-linking between σ32 and Ffh.
(A) Detection of a cross-linked product following UV irradiation in whole cells. Cells of CAG48238/pEVOL-pBpF/p6XH-rpoHT52amber (lanes 1, 2, 5, and 6) and CAG48238/pEVOL-pBpF/p6XH-rpoH (lanes 3, 4, 7, and 8) were grown at 30°C in L-medium supplemented with 0.02% arabinose, induced with 1 mM IPTG for 1 h, and UV-irradiated for 0 or 10 min as indicated. Total cellular proteins were acid-precipitated and analyzed by SDS-PAGE and immunoblotting with anti-Ffh and anti-σ32 antibodies. (B) Immunoprecipitation with anti-Ffh reveals a unique cross-linked product that interacts with anti-σ32. Supernatants of sonically disrupted UV-irradiated cells were subjected to immunoprecipitation with anti-Ffh antibodies. Immunocomplexes were solubilized in SDS sample buffer, analyzed by SDS-PAGE, and immunoblotted with anti-Ffh and anti-σ32 antibodies. Proteins from approximately 4.4-fold more cells were loaded onto the gel for the immunoprecipitated samples as compared with the whole cell samples. (C) Purification of 6×H-σ32 from UV-irradiated cells reveals a band that interacts with anti-Ffh. Supernatants of sonically disrupted UV-irradiated cells were subjected to TALON affinity chromatography, and bound proteins were eluted with 300 mM imidazole. Proteins in the eluate were acid-precipitated and analyzed by SDS-PAGE and immunoblotting with anti-Ffh antibodies. Proteins form approximately 20-fold more cells were loaded onto the gel for the TALON-affinity isolated samples as compared with the whole cell samples.
Figure 4
Figure 4. SRP (Ffh+4.5S RNA) preferentially interacts with WTσ32.
(A) A280 elution profiles of WTσ32, I54Nσ32, Ffh, and SRP alone or in complex. WTσ32 or I54Nσ32 was incubated with a 10-fold molar excess of purified SRP on ice for 10 min, and complexes were analyzed by gel filtration on a Superdex 200 PC3.2/30 column. Protein elution was monitored by A280. Gel filtration of purified WTσ32, I54Nσ32, and SRP alone was carried out to determine the migration of each individual protein on the column. (B) Eluted fractions were separated on SDS-PAGE and probed with polyclonal antibodies against Ffh and σ32; Western blots of σ32 are shown. Experiments were performed at least four times, and a representative experiment is shown.
Figure 5
Figure 5. σ32 is partially membrane associated.
The extent of association of σ32 and the β′ subunit of RNA polymerase with the membrane fraction was determined by quantitative immunoblotting of the soluble and nonsoluble fractions. Membrane association of σ32 and β′ was assessed in several relevant strain backgrounds. In addition to endogenous σ32, all strains contained a plasmid-encoded variant of σ32 lacking its 21 C-terminal amino acids (σ32Δ21aa). Ectopically expressed σ32Δ21aa or I54Nσ32Δ21aa were present at levels comparable to native σ32 and were distinguished from endogenous σ32 on a 12% SDS-PAGE gel. All fractionation experiments were performed ≥8 times, and % fractionation was calculated from experiments where probed cytoplasmic (RuvB) and membrane (RseA) proteins separated properly.
Figure 6
Figure 6. The SecY translocon plays a role in chaperone-mediated activity control of σ32.
(A) Schematic of SecY topology in the IM by highlighting in yellow the locations/allele names of the mutated residues used in this study . The region that interacts with FtsY (Domain C5) is boxed in green. (B) Mutations in secY show higher σ32 activity and affect chaperone-mediated activity control of σ32. The activity of σ32 was measured in WT and secY mutant cells growing at 30°C in LB medium (column 1) or in the same cells following induction of DnaK/J (column 2) or GroEL/S (column 3). Activity is calculated as the differential rate of β-galactosidase synthesis from a chromosomal PtpG-lacZ reporter in each cell type relative to that of WT cells.

Comment in

Similar articles

Cited by

References

    1. Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80: 1089–1115 doi:10.1146/annurev-biochem-060809-095203 - DOI - PubMed
    1. Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes & Development 22: 1427–1438 doi:10.1101/gad.1657108 - DOI - PMC - PubMed
    1. Morimoto RI (2012) The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harbor Symposia on Quantitative Biology 76: 91–99 doi:10.1101/sqb.2012.76.010637 - DOI - PubMed
    1. Yamamori T, Yura T (1980) Temperature-induced synthesis of specific proteins in Escherichia coli: evidence for transcriptional control. J Bacteriol 142: 843–851. - PMC - PubMed
    1. Grossman AD, Erickson JW, Gross CA (1984) The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38: 383–390. - PubMed

Publication types

MeSH terms