Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli
- PMID: 24358019
- PMCID: PMC3866087
- DOI: 10.1371/journal.pbio.1001735
Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli
Abstract
All cells must adapt to rapidly changing conditions. The heat shock response (HSR) is an intracellular signaling pathway that maintains proteostasis (protein folding homeostasis), a process critical for survival in all organisms exposed to heat stress or other conditions that alter the folding of the proteome. Yet despite decades of study, the circuitry described for responding to altered protein status in the best-studied bacterium, E. coli, does not faithfully recapitulate the range of cellular responses in response to this stress. Here, we report the discovery of the missing link. Surprisingly, we found that σ(32), the central transcription factor driving the HSR, must be localized to the membrane rather than dispersed in the cytoplasm as previously assumed. Genetic analyses indicate that σ(32) localization results from a protein targeting reaction facilitated by the signal recognition particle (SRP) and its receptor (SR), which together comprise a conserved protein targeting machine and mediate the cotranslational targeting of inner membrane proteins to the membrane. SRP interacts with σ(32) directly and transports it to the inner membrane. Our results show that σ(32) must be membrane-associated to be properly regulated in response to the protein folding status in the cell, explaining how the HSR integrates information from both the cytoplasm and bacterial cell membrane.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
Comment in
-
Heat shock response regulator is pinned to the membrane.PLoS Biol. 2013 Dec;11(12):e1001736. doi: 10.1371/journal.pbio.1001736. Epub 2013 Dec 17. PLoS Biol. 2013. PMID: 24358020 Free PMC article. No abstract available.
Similar articles
-
Heat shock response regulator is pinned to the membrane.PLoS Biol. 2013 Dec;11(12):e1001736. doi: 10.1371/journal.pbio.1001736. Epub 2013 Dec 17. PLoS Biol. 2013. PMID: 24358020 Free PMC article. No abstract available.
-
A Novel SRP Recognition Sequence in the Homeostatic Control Region of Heat Shock Transcription Factor σ32.Sci Rep. 2016 Apr 7;6:24147. doi: 10.1038/srep24147. Sci Rep. 2016. PMID: 27052372 Free PMC article.
-
A chaperone network controls the heat shock response in E. coli.Genes Dev. 2004 Nov 15;18(22):2812-21. doi: 10.1101/gad.1219204. Genes Dev. 2004. PMID: 15545634 Free PMC article.
-
The heat shock response of Escherichia coli.Int J Food Microbiol. 2000 Apr 10;55(1-3):3-9. doi: 10.1016/s0168-1605(00)00206-3. Int J Food Microbiol. 2000. PMID: 10791710 Review.
-
Microbial molecular chaperones.Adv Microb Physiol. 2001;44:93-140. doi: 10.1016/s0065-2911(01)44012-4. Adv Microb Physiol. 2001. PMID: 11407116 Review.
Cited by
-
Escherichia coli small heat shock protein IbpA plays a role in regulating the heat shock response by controlling the translation of σ32.Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2304841120. doi: 10.1073/pnas.2304841120. Epub 2023 Jul 31. Proc Natl Acad Sci U S A. 2023. PMID: 37523569 Free PMC article.
-
Increased Synthesis of a Magnesium Transporter MgtA During Recombinant Autotransporter Expression in Escherichia coli.Appl Biochem Biotechnol. 2021 Nov;193(11):3672-3703. doi: 10.1007/s12010-021-03634-5. Epub 2021 Aug 5. Appl Biochem Biotechnol. 2021. PMID: 34351586
-
Two Signal Recognition Particle Sequences Are Present in the Amino-Terminal Domain of the C-Tailed Protein SciP.J Bacteriol. 2020 Dec 7;203(1):e00312-20. doi: 10.1128/JB.00312-20. Print 2020 Dec 7. J Bacteriol. 2020. PMID: 33020223 Free PMC article.
-
Clustering of rRNA operons in E. coli is disrupted by σH.bioRxiv [Preprint]. 2024 Sep 21:2024.09.20.614170. doi: 10.1101/2024.09.20.614170. bioRxiv. 2024. PMID: 39345417 Free PMC article. Preprint.
-
The Interplay between Two Transcriptional Repressors and Chaperones Orchestrates Helicobacter pylori Heat-Shock Response.Int J Mol Sci. 2018 Jun 7;19(6):1702. doi: 10.3390/ijms19061702. Int J Mol Sci. 2018. PMID: 29880759 Free PMC article. Review.
References
-
- Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80: 1089–1115 doi:10.1146/annurev-biochem-060809-095203 - DOI - PubMed
-
- Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes & Development 22: 1427–1438 doi:10.1101/gad.1657108 - DOI - PMC - PubMed
-
- Morimoto RI (2012) The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harbor Symposia on Quantitative Biology 76: 91–99 doi:10.1101/sqb.2012.76.010637 - DOI - PubMed
-
- Grossman AD, Erickson JW, Gross CA (1984) The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38: 383–390. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
