Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
- PMID: 24360272
- PMCID: PMC3918502
- DOI: 10.1016/j.cell.2013.12.001
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
Erratum in
- Cell. 2014 Jan 16;156(1-2):373
Abstract
The spatiotemporal organization and dynamics of chromatin play critical roles in regulating genome function. However, visualizing specific, endogenous genomic loci remains challenging in living cells. Here, we demonstrate such an imaging technique by repurposing the bacterial CRISPR/Cas system. Using an EGFP-tagged endonuclease-deficient Cas9 protein and a structurally optimized small guide (sg) RNA, we show robust imaging of repetitive elements in telomeres and coding genes in living cells. Furthermore, an array of sgRNAs tiling along the target locus enables the visualization of nonrepetitive genomic sequences. Using this method, we have studied telomere dynamics during elongation or disruption, the subnuclear localization of the MUC4 loci, the cohesion of replicated MUC4 loci on sister chromatids, and their dynamic behaviors during mitosis. This CRISPR imaging tool has potential to significantly improve the capacity to study the conformation and dynamics of native chromosomes in living human cells.
Copyright © 2013 Elsevier Inc. All rights reserved.
Figures
Similar articles
-
Imaging genomic elements in living cells using CRISPR/Cas9.Methods Enzymol. 2014;546:337-54. doi: 10.1016/B978-0-12-801185-0.00016-7. Methods Enzymol. 2014. PMID: 25398348
-
Live-cell CRISPR imaging in plants reveals dynamic telomere movements.Plant J. 2017 Aug;91(4):565-573. doi: 10.1111/tpj.13601. Epub 2017 Jul 14. Plant J. 2017. PMID: 28509419 Free PMC article.
-
CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells.Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11870-5. doi: 10.1073/pnas.1515692112. Epub 2015 Aug 31. Proc Natl Acad Sci U S A. 2015. PMID: 26324940 Free PMC article.
-
Progress and Challenges for Live-cell Imaging of Genomic Loci Using CRISPR-based Platforms.Genomics Proteomics Bioinformatics. 2019 Apr;17(2):119-128. doi: 10.1016/j.gpb.2018.10.001. Epub 2019 Jan 30. Genomics Proteomics Bioinformatics. 2019. PMID: 30710789 Free PMC article. Review.
-
Imaging Specific Genomic DNA in Living Cells.Annu Rev Biophys. 2016 Jul 5;45:1-23. doi: 10.1146/annurev-biophys-062215-010830. Epub 2016 Apr 27. Annu Rev Biophys. 2016. PMID: 27145877 Free PMC article. Review.
Cited by
-
CRISPR-mediated control of the bacterial initiation of replication.Nucleic Acids Res. 2016 May 5;44(8):3801-10. doi: 10.1093/nar/gkw214. Epub 2016 Apr 1. Nucleic Acids Res. 2016. PMID: 27036863 Free PMC article.
-
Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs.Genetics. 2015 Jun;200(2):431-41. doi: 10.1534/genetics.115.176917. Epub 2015 Apr 8. Genetics. 2015. PMID: 25855067 Free PMC article.
-
Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes.J Biol Chem. 2016 Jul 8;291(28):14457-67. doi: 10.1074/jbc.M116.733154. Epub 2016 May 5. J Biol Chem. 2016. PMID: 27151215 Free PMC article.
-
DNA double-strand breaks alter the spatial arrangement of homologous loci in plant cells.Sci Rep. 2015 Jun 5;5:11058. doi: 10.1038/srep11058. Sci Rep. 2015. PMID: 26046331 Free PMC article.
-
Pax3/7 regulates neural tube closure and patterning in a non-vertebrate chordate.Front Cell Dev Biol. 2022 Sep 12;10:999511. doi: 10.3389/fcell.2022.999511. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 36172287 Free PMC article.
References
-
- Augui S, Nora EP, Heard E. Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet. 2011;12:429–442. - PubMed
-
- Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–1712. - PubMed
-
- d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426:194–198. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- OD017887/OD/NIH HHS/United States
- T32 GM007810/GM/NIGMS NIH HHS/United States
- U01 CA168370/CA/NCI NIH HHS/United States
- DA036858/DA/NIDA NIH HHS/United States
- T32 GM007618/GM/NIGMS NIH HHS/United States
- CA168370/CA/NCI NIH HHS/United States
- P50 GM081879/GM/NIGMS NIH HHS/United States
- DP5 OD017887/OD/NIH HHS/United States
- CA096840/CA/NCI NIH HHS/United States
- R01 CA096840/CA/NCI NIH HHS/United States
- GM105913/GM/NIGMS NIH HHS/United States
- HHMI_/Howard Hughes Medical Institute/United States
- GM081879/GM/NIGMS NIH HHS/United States
- GM102706/GM/NIGMS NIH HHS/United States
- P50 GM102706/GM/NIGMS NIH HHS/United States
- R01 DA036858/DA/NIDA NIH HHS/United States
- R00 GM105913/GM/NIGMS NIH HHS/United States
- K99 GM105913/GM/NIGMS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
