Coronary vessels and cardiac myocytes of middle-aged rats demonstrate regional sex-specific adaptation in response to postmyocardial infarction remodeling

Biol Sex Differ. 2014 Jan 3;5(1):1. doi: 10.1186/2042-6410-5-1.

Abstract

Background: An increasing body of evidence indicates that left ventricular (LV) remodeling, especially the degree of reactive myocardial hypertrophy after myocardial infarction (MI), differs in males and females. Surprisingly, to date, the sex-specific post-MI alterations of the coronary vasculature remain undetermined. Therefore, we tested the hypothesis that adaptive coronary arteriolar and capillary modifications occurring in response to reactive myocyte hypertrophy differ between middle-aged male and female post-MI rats.

Methods: A large MI was induced in 12-month-old male (M-MI) and female (F-MI) Sprague-Dawley rats by ligation of the left coronary artery. Four weeks after surgery, rats with transmural infarctions, greater than 50% of the LV free wall (FW), were evaluated. Sham-operated male (M-Sham) and female (F-Sham) rats served as an age-matched controls.

Results: F-MI and M-MI rats had similar sized infarcts (61.3% ± 3.9% vs. 61.5% ± 1.2%) and scale of LV remodeling, as indicated analogous remodeling indices (1.41 ± 0.11 vs. 1.39 ± 0.09). The degree of reactive post-MI myocardial hypertrophy was adequate to normalize LV weight-to-body weight ratio in both sexes; however, the F-MI rats, in contrast to males, showed no myocyte enlargement in the LVFW epimyocardium. At the same time, a greater than 50% expansion of myocyte area in the male epimyocardium and in the female endomyocardium was accompanied by a 23% (P < 0.05) increase in capillary-to-myocyte ratio, indicative of adaptive angiogenesis. Based on arteriolar length density in post-MI hearts, the resistance vessels grew in the male LVFW as well as the septum by 24% and 29%, respectively. In contrast, in females, a significant (30%) expansion of arteriolar bed was limited only to the LVFW. Moreover, in F-MI rats, the enlargement of the arteriolar bed occurred predominantly in the vessels with diameters <30 μm, whereas in M-MI rats, a substantial (two- to threefold) increase in the density of larger arterioles (30 to 50 μm in diameter) was also documented.

Conclusion: Our data reveal that while both sexes have a relatively similar pattern of global LV remodeling and adaptive angiogenesis in response to a large MI, male and female middle-aged rats differ markedly in the regional scale of reactive cardiac myocyte hypertrophy and adaptive arteriogenesis.