Influence of implant framework and mandibular flexure on the strain distribution on a Kennedy class II mandible restored with a long-span implant fixed restoration: a pilot study
- PMID: 24388719
- DOI: 10.1016/j.prosdent.2013.08.012
Influence of implant framework and mandibular flexure on the strain distribution on a Kennedy class II mandible restored with a long-span implant fixed restoration: a pilot study
Abstract
Statement of problem: The human mandible flexes during different jaw movements. Mandibular flexure is known to be restricted when natural dentition is restored with long-span fixed prostheses, but its effect on implant-supported fixed prostheses is unknown. Restriction of mandibular movement by implant-supported fixed prostheses may lead to excess strain accumulation, which could affect the outcome of implant treatment.
Purpose: The purpose of this study was to investigate the influence of mandibular flexure on the implant bone interface by measuring the strain distribution in the body of the mandible at the periimplant level and at the implant framework level during the unilateral loading of a long-span implant-supported fixed prosthesis.
Material and methods: A partially edentulous mandible model with the mandibular left premolars and molars missing was fabricated in epoxy resin. Two implants were placed in the edentulous area, one in the position of the first premolar and one in the position of the second molar. Strain gauges were cemented at the implant bone interface parallel to each implant on the body of the mandible and on the framework. Three screw-retained, 3 × 3-mm bar-shaped frameworks were cast from cobalt-chromium alloy. The fit of these frameworks was deemed clinically acceptable with a routine clinical assessment technique. The mandible model was suspended by elastic cords to a universal testing machine. A 50-N load cell was placed on the occlusal surface of the right first molar. The mandible model was then loaded to 50 N on the working side first without any framework and then a second time with the framework in place. Information from the strain gauges were collected with a computer for analysis.
Results: When the mandible model was loaded without the implant framework, the buccal aspect of the body of the mandible experienced mainly compression, whereas the lingual aspect was mainly in tension on the working side under unilateral loading. At the implant-bone interface, compression strain was detected on the mesial aspect of the mesial implant. When frameworks were placed and a unilateral load applied, compression was detected on the mesial and buccal aspect of the mesial implant with all 3 frameworks. The amount of strain recorded was higher than that recorded without any framework in place.
Conclusions: Mandibular flexure occurred during unilateral loading. The amount of strain transmitted to the implants increased with the screw-retained fixed-implant frameworks in place. The amount of strain introduced by mandibular flexure under unilateral loading may not be enough to stimulate bone remodeling; however, the accumulative strain generated by mandibular flexure under cyclic loading and its relationship with bone remodeling is unclear.
Copyright © 2014 The Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Similar articles
-
Should oral implants be splinted in a mandibular implant-supported fixed complete denture? A 3-dimensional-model finite element analysis.J Prosthet Dent. 2014 Sep;112(3):508-14. doi: 10.1016/j.prosdent.2013.12.004. Epub 2014 Feb 21. J Prosthet Dent. 2014. PMID: 24560983
-
Microstrains around standard and mini implants supporting different bridge designs.J Oral Implantol. 2012 Jun;38(3):221-9. doi: 10.1563/AAID-JOI-D-10-00020. Epub 2010 Aug 16. J Oral Implantol. 2012. PMID: 20712439
-
A comparison of fit of CNC-milled titanium and zirconia frameworks to implants.Clin Implant Dent Relat Res. 2012 May;14 Suppl 1:e20-9. doi: 10.1111/j.1708-8208.2010.00334.x. Epub 2011 Mar 17. Clin Implant Dent Relat Res. 2012. PMID: 21414138
-
Mandibular flexure and its significance on implant fixed prostheses: a review.J Prosthodont. 2012 Apr;21(3):219-24. doi: 10.1111/j.1532-849X.2011.00798.x. Epub 2011 Nov 1. J Prosthodont. 2012. PMID: 22044758 Review.
-
Restoration of the partially edentulous mouth--a comparison of overdentures, removable partial dentures, fixed partial dentures and implant treatment.J Dent. 1996 Jul;24(4):237-44. doi: 10.1016/0300-5712(95)00075-5. J Dent. 1996. PMID: 8783527 Review.
Cited by
-
Biomechanical Implications of Mandibular Flexion on Implant-Supported Full-Arch Rehabilitations: A Systematic Literature Review.J Clin Med. 2023 Aug 15;12(16):5302. doi: 10.3390/jcm12165302. J Clin Med. 2023. PMID: 37629344 Free PMC article. Review.
-
Mandibular Flexure and Its Significance: An In Vivo Cone Beam-Computed Tomography Proof-of-Concept Study.J Clin Med. 2023 Jun 20;12(12):4149. doi: 10.3390/jcm12124149. J Clin Med. 2023. PMID: 37373841 Free PMC article.
-
Clinical Influence of Mandibular Flexure on Oral Rehabilitation: Narrative Review.Int J Environ Res Public Health. 2022 Dec 13;19(24):16748. doi: 10.3390/ijerph192416748. Int J Environ Res Public Health. 2022. PMID: 36554629 Free PMC article. Review.
-
The effect of mandibular flexure on the design of implant-supported fixed restorations of different facial types under two loading conditions by three-dimensional finite element analysis.Front Bioeng Biotechnol. 2022 Aug 29;10:928656. doi: 10.3389/fbioe.2022.928656. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 36105608 Free PMC article.
-
Biomechanical effects of offset placement of dental implants in the edentulous posterior mandible.Int J Implant Dent. 2016 Dec;2(1):17. doi: 10.1186/s40729-016-0050-6. Epub 2016 Jun 17. Int J Implant Dent. 2016. PMID: 27747709 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
